The use of 3D Ultrasonography fetal Lung Volume Measurement in the prediction of Fetal respiratory function outcome

Thesis
Submitted for fulfillment for the
Master degree (M.Sc.) in Obstetrics & Gynecology
By

Nermeen Ismail Abd El-Hamid Mohamed M.B.B.Ch Under The Supervision Of

Prof.Dr.Gamal Gamal El-Din Youssef

Professor of Obstetrics & Gynecology Faculty of Medicine Cairo university

Assistant Prof.Dr. Amal Hanafy Hussin

Assistant professor of Obstetrics & Gynecology
Faculty of Medicine
Cairo university

Dr. Moutaz Mahmoud Elsherbini

Lecturer of Obstetrics & Gynecology
Faculty of Medicine
Cairo university

Faculty of Medicine Cairo university 2015

أستخدام قياس حجم رئة الجنين بواسطة الموجات الصوتية ثلاثية الأبعاد للتنبؤ بنتائج الوظائف التنفسيه للجنين

رسالة للحصول على درجه الماجستير في التوليد وأمراض النساء

مقدمة من

الطبيبة: نرمين إسماعيل عبد الحميد محمد

بكالوريوس الطب والجراحة كلية الطب . جامعة القاهرة

تحت إشراف

أ.د/جمال جمال الدين يوسف

أستاذ التوليد و أمراض النساء كلية الطب . جامعة القاهرة

أ. د.م/ أمل حنفي حسين

أستاذ مساعد التوليد و أمراض النساء كلية الطب. جامعة القاهرة

د/معتز محمود الشربيني

مدرس التوليد و أمراض النساء كلية الطب . جامعة القاهرة

جامعة القاهرة _ كلية الطـــب

7.10

وقل اعْمَلُوا فَسَيَرَى اللهُ عَمَلُوا مُعَمَلُوا فَسَيَرَى اللهِ عَمَلُكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونِ

سورة التوبة رقم الأية ٥٠٥

Acknowledgement

I would like to express my deepest gratitude and greatest appreciation to prof. *Gamal Gamal El-Din Youssef* for his valuable guidance and continuous encouragement in order to distinguished completion of this work.

I would like also to thank prof. *Amal Hanafy Hussein* for her encouragement & kind supervision that helped me much to accomplish this work.

Special thanks and gratitude to Dr. *Moutaz Mahmoud Elsherbini* who had been kind enough to spare no effort and time to advice and supervise me and gave his experience to assist, in every possible way to accomplish this work.

Many thanks to prof. *Ahmed Maged*, prof. *Hassan Mostafa Gaafar*, Dr. *Marwa Mohamed Eid* & Dr. *Rasha Omar Elkomy* for their sincere help in ultrasound performance.

Many thanks to prof. *Abd El-rahman Ahmed Abd El-razek* (Assist. Prof. of Pediatrics - Cairo university) for his kind supervision and advice.

Nermeen Ismail Abd El-Hamed

Abstract

<u>Objective:</u> To study the correlation between fetal lung volumes (FLVs), determined by three-dimensional ultrasound and virtual organ computer-aided analysis software (VOCAL), with neonatal respiratory outcomes.

Study Design: prospective observational study.

<u>Setting:</u> Obstetrics and Gynecology casualty department, Kasr El-Aini hospital, Cairo University, Egypt in the period from June 2014 to December 2014.

Methodology: One hundred healthy women with singleton pregnancies presented in the 1st stage of labour were included in the study, divided into two groups; Group A (n: 50 - women pregnant \pm 34-37 weeks) & Group B (n: 50 - women pregnant \pm 37⁺¹-40 weeks). A 3D volume model of the right fetal lung is generated & lung volume is calculated using VOCAL software. After child birth, neonatal respiratory functions were assessed using APGAR score together with occurrence of RDS and the further need for NICU admission.

Results: In group A, FLV was positively correlated with gestational age, while it was negatively correlated with APGAR score, RDS & NICU admission. In group B, FLV was positively correlated with gestational age, while there was no statistical correlation between FLV & APGAR score, RDS, NICU admission.

<u>Conclusion:</u> 3D FLV using VOCAL technique might be an accurate non- invasive predictor for fetal lung maturity particularly among preterm fetuses.

Keywords:

Fetal lung volumes (FLVs) - Three-dimensional ultrasound - VOCAL - Fetal lung maturity.

Table of Contents

Title	Page
Abstract	i
List of Figures	ii
List of Tables	v
List of Abbreviations	vii
Introduction.	1
Aim of Work.	4
Review of Literature	
Lung Development	5
Respiratory Distress Syndrome	15
Assessment of Fetal Lung Maturity using Amniotic Fluid	31
Assessment of Fetal Lung Maturity using Imaging Modalities	41
Patients & Methods.	57
Results.	61
Discussion.	73
Summary & conclusion 80	
References.	83
Arabic Summary	101

List of Figures

Figure Title	Page
Figure 1: Fetal lung development	6
Figure 2: Embryonic stage of fetal lung development	7
Figure 3: Pseudo-glandular phase of fetal lung development	8
Figure 4: Canalicular phase of fetal lung development	9
Figure 5: Saccular phase of fetal lung development	11
Figure 6: Alveolar phase of fetal lung development	12
Figure 7: Development of the airways and arteries	12
Figure (8): Classic RDS X–ray picture	19
Figure (9): Laboratory tests for neonatal respiratory distress	19
Figure (10): Management of RDS	29
Figure(11): Differential diagnosis of neonatal respiratory distress	30

Figure Title	Page
Figure (12): Fetal Lung Maturity Test Cascade (ACOG)	32
Figure(13): Lecithin/sphingomyelin ratio	34
Figure (14): AmnioStat-FLM	35
Figure (15): Fetal thalamic echogenicity	44
Figure (16): 3D fetal lung measurement using the multiplanar technique	47
Figure (17): Assessment of the lung volume using the VOCAL technique	50
Figure (18): 3D fetal lung measurement using the rotational technique with VOCAL	51
Figure (19): RDS in MRI	54
Figure (20): Mean values of GA in the two studied groups	62
Figure (21): Mode of delivery in the two studied groups	63
Figure (22): Comparison between mean values of FLV in the two studied groups	63
Figure (23): APGAR score measured at 1, 5 and 10 minutes in the two studied groups	65

List of Figures

Figure Title	Page
Figure (24): RDS in the two studied groups	67
Figure (25): Neonatal intensive care unit (ICU) admission in the two studied groups	68
Figure (26): antenatal Steroids administration in the two studied groups	69
Figure (27): The ROC curve of fetal lung volume in the studied patients.	72
Figure (28): fetal right lung volume (group A – a case pregnant \pm 35 weeks)	75
Figure (29): fetal right lung volume (group $B-a$ case pregnant \pm 37 weeks)	76

List of Tables

Table Title	Page
Table (1): Types of tests used for evaluation of fetal lung maturity	33
Table (2): Comparison between the sensitivity and the specificity of the four ultrasound parameters in Rasheed's study as a sign of fetal lung maturity	44
Table (3): Percentiles of Fetal Lung Volume Estimated by 3DUS Using the Rotational Technique (VOCAL) With Regard to Gestational Age	56
Table (4): Demographic features of the two studied groups	61
Table (5): Mode of delivery in the two studied groups	62
Table (6): Comparison between mean values of FLV in the two studied groups	63
Table (7): APGAR score at 1, 5 & 10 min. in the two studied groups	65
Table (8): Respiratory distress syndrome in the two studied groups	66
Table (9): NICU admission in the two studied groups	68

List of Tables

Table Title	Page
Table (10): Antenatal Steroids administration in the two studied groups	69
Table (11): Correlation between fetal lung volume and different studied parameters in both preterm and term groups.	70
Table (12): Correlation between RDS and steroids in both preterm and term groups	71
Table (13): The diagnostic indices (sensitivity, specificity, positive predictive and negative predictive values) of FLV in the studied patients	72

2D	Two-dimensional
3D	Three-dimensional
3DUS	Three-dimensional ultrasound
6 N HCL	N hydrochloric acid
BPD	Bronchopulmonary dysplasia
BPD	Biparietal diameter
CDH	Congenital diaphragmatic hernia
cm H ₂ O	centimeters of water
CMV	Conventional ventilation
CPAP	Continuous positive airway pressure
CS	Cesarean section
CV	Conventional ventilation
CXR	Chest X-rays
DFE	Distal femoral epipyseal
DM	Diabetes mellitus
FiO2	Fraction of inspired oxygen
fL	Femto liter
FLM	Fetal lung maturity
FLV	Fetal lung volume
FSI	Foam Stability Index
g	Gram
GA	Gestational age
GLHW	Grey-level histogram width
HFOV	High frequency oscillatory ventilation

HFV	High frequency ventilation
iNO	Inhaled nitric oxide
IRDS	Infant respiratory distress syndrome
IUGR	Intrauterine growth restriction
IVH	Intraventricular hemorrhage
kPa	kilopascal
L/S	Lecithin/sphingomyelin ratio
LBC	lamellar body count
LLSIR	Lung-to-liver signal intensity ratio
MAS	Meconium Aspiration Syndrome
MGV	Mean gray value
MHz	Megahertz
min	Minute
mL/kg	Millilitre per kilogram
mm Hg	Millimetres of mercury
MRI	Magnetic resonance imaging
n	Number
NEC	Necrotizing enterocolitis
NICU	Neonatal intensive care unite
NIPPV	Neonatal nasal intermittent positive pressure ventilation
nm	Nanometre
NO-cGMP	Nitric oxide - cyclic guanosilmonophosphate
NS	Not significant
OD650	Optical density at 650 nm
P value	probability value
PaO ₂	Arterial oxygen tension

PATET	Pulmonary artery acceleration/ejection time ratio
PCO ₂	Partial pressure of carbon dioxide
PDA	Patent duct arteriosus
PEEP	Peak expiratory end pressure
PG	Phosphatidylglycerol
PHE	Proximal humeral epiphysis
PI	Pulsatility index
PIH	pregnancy induced hypertension
PIP	peak inspiratory pressure
PL	Pressure-limited
PPHN	Persistent pulmonary hypertension of the newborn
PTE	Proximal tibial epiphyseal
PVR	Pulmonary vascular resistance
r	Pearson Correlation
RCT	Randomized controlled trial
RDS	Respiratory distress syndrome
RI	Resistance index
ROC	Receiver operating curve
S/A	Surfactant/albumin ratio
SD	Standard deviation
SIMV	Synchronized intermittent mandatory ventilation
TCPL	Time-cycled pressure-limited
TTN	Transient tachypnea of the newborn
VC	Volume-controlled
VG	Volume-guarantee
VOCAL	Virtual organ computer-aided analysis software

wks	Weeks
yrs	Years
μl	Microliter
μm	Micrometre