ASSESSING CURRENT NUTRITIONAL STATUS OF PATIENTS WITH HCV RELATED CIRRHOSIS IN THE COMPENSATED STAGE

Thesis

Submitted for partial fulfillment of Master Degree In Internal Medicine

By

Ebtehal Mahmoud Abdou Abo Zaid

(M.B.B.Ch.)

Faculty of Medicine, Cairo University

Supervised by

Prof. Dr. Hoda Mahmoud Amin

Professor of Hepatology& Internal Medicine.

Faculty of Medicine, Cairo University.

Prof. Dr. Fardous Soliman Hamed Soliman

Professor of Clinical Nutrition
National Nutrition Institute

Dr. Rasha Mohamed Abdel Samie Abdella

Lecturer of Internal Medicine
Faculty of Medicine, Cairo University.

Faculty of Medicine Cairo University.

2016

Before all and above all, thanks to God for every thing

Iam greatly honored to express my sincere gratitude, deepest appreciation to **Dr. Hoda Mahmoud Amin,** for her outstanding guidance and kind support throughout the work.

I would like to express my deepest gratitude and appreciation to Dr. Fardous Hamed Soliman, for her generous help, guidance and faithful support.

I would like to express my deepest gratitude and appreciation to Dr. Rasha Mohamed Abdel Samie, for her generous help, guidance and faithful support

I would like to express my deepest gratitude and appreciation to Dr, Sayed Hammad, aspecialized dietitian in National Nutrition Institute for his help and guidance

I would like to thank all patients who participated in this study and wish them a soon recovery.

I dedicate this work to my family who supported me all through this work,

May **Allah** accept the work of all those and reward them for it.

Abstract

Background Nutritional status of patients with liver cirrhosis have recently shown great diversity, some show protein energy malnutrition and others excessive nutrition and obesity. Many studies have investigated energy and protein metabolism in cirrhotic patients; however there are few studies regarding nutritional intake in patients with hepatitis C virus (HCV) - related liver cirrhosis (LC-C).

Objective: The aim of our study is to assess the nutritional status among a group of Egyptian patients with Child's A liver cirrhosis and chronic hepatitis C patients without cirrhosis and comparing them with age- and sex- matched healthy volunteers.

Methods: A total of 120 subjects were recruited in the present study and included 40 patients with hepatitis C- related liver cirrhosis (Group I), 40 patients with chronic hepatitis C (Group II), and 40 age- and sexmatched healthy Egyptian volunteers (Group III).. Liver cirrhosis was diagnosed on the basis of clinical features, documented laboratory tests and/or abdominal ultrasound. Child-Turcotte Pugh (CTP) score was used to establish the severity of liver cirrhosis. All hepatitis C- related liver cirrhosis patients enrolled were in the compensated stage.

Different anthropometric methods were used for nutritional assessment as subjective global assessment(SGA),Body Mass Index(BMI), triceps skin fold thickness (TST),Mid Arm Cirrcumference(MAC),Mid Arm Muscle Circumference(MAMC), subscapular skin fold thickness) beside 24 – hour dietary recall.

Results: By SGA method, that there were highly significant statistical differences between the different studied groups as regard the different components of SGA including weight loss (p=0.008), dietary intake (p=0.013), functional capacity (p=0.008) and GIT symptoms (p=0.008).

The majority of the liver cirrhosis (25/40), chronic HCV(29/40) and healthy control groups (37/40) were well- nourished (Graded an 'A') on SGA rating and the rest of the subjects were mild to moderately malnourished (Graded a 'B') on SGA rating, although this did not reach statistical significance (p=0.958).

Regarding the dietary intake, the majority of the patients in the liver cirrhosis group had an average caloric intake while most of patients with chronic HCV and the healthy controls had an insufficient caloric intake.

Regarding the daily protein intake, most of the patients with chronic HCV had an average or an excessive protein intake. Most of the liver cirrhosis patients and the healthy controls showed an excessive protein intake. However, all these differences did not reach statistical significance.

In HCV-related cirrhosis group: There is a highly significant positive correlation of BMI with TST, MAC, MAMC and subscapular skin fold thickness with p values =0.000. BMI showed a non significant inverse correlation with the SGA.

In chronic hepatitis C patients group: There is a highly significant positive correlation of BMI with TST, sub-scapular skin fold thickness, MAMC and MAC parameters with p values =0.000, 0.000, 0.0351, 0.04 respectively. BMI showed a non significant inverse correlation with the SGA .

Conclusion: The SGA underestimated the diagnosis of malnutrition among the different studied groups, also it did not detect the severe degree of malnutrition among the different studied groups. % TST was a better measure diagnosis of malnutrition and the degree of severity of malnutrition. BMI correlates with different methods of nutritional assessment except SGA.

Keywords: Liver cirrhosis- Malnutrition- Compensated Stage - HCV.

List of Contents

TITLE	PAGE
List of Abbreviations	I- IV
List of Tables	V-VI
List of Figures	VII-VIII
Introduction and aim of work	1-3
Chapter (1): Liver Cirrhosis	4-25
Chapter (2): Metabolic Alterations In Liver Cirrhosis	26-66
Chapter (3): Nutritional Assessment And Nutritional Requirements In Chronic Liver Disease	67-108
Patients and methods	109-114
Results	115-145
Discussion`	146-158
Conclusion and Recommendations	159-160
Summary	161-162
References	163-205
Arabic Summary	1-2

List of Abbreviations

Akt	Activated serinethreonine-kinase
2-AG	2- arachidonoyl glycerol
ALS	Acid-labile subunit
ALT	Alanine transaminase
AST	Aspartate Transaminase
BCAA	Branched chain amino acids
BCM	Body cell mass
BIA	Bioelectrical impedance analysis
BMI	Body mass index
(CB)1	Cannabinoid Receptor 1
CEE	Contrast echocardiography
CLD	Chronic liver disease
CT	Computed tomography
СТР	Child –Turcotte-Pugh classification
DEXA	Dual energy X-ray absorptiometry
DIC	Disseminated intravascular coagulation
ER	Endoplasmic reticulum
ESPEN	European Society for Clinical Nutrition and Metabolism
EVS	Endoscopic vaso ligation
FAS	Fatty acid synthase
FDA	Food and Drug Administration
FFA	Free fatty acid
FHF	Fulminant hepatic failure
GABA	Gamma amino butyric acid
GGT	Gamma glutamyl transferase
GH	Growth hormone
GHIGF-1	Growth hormone/insulin-like growth factor-1
GOV	Gastro esophageal varices
НВЕ	Harris Benedict equation

HBV	Hepatitis B Virus
НСС	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HE	Hepatic encephalopathy
HGO	Human glucose output
HIV	Human Immune Deficiency Virus
HNE	Hydroxynonenal
HOMA	Homeostatic Model Assessment
HPS	Hepato pulmonary syndrome
HRCT	High resolution computed tomography
HRS	Hepatorenal syndrome
IGF-1	Insulin-like growth factor-1
IGFBP-3	IGF-binding protein-3
INF	Interferon
IPVD	Intra pulmonary vascular vasodilatation
IR	Insulin Resistance
IRS-1	Insulin Receptor Substrate 1
IVNAA	Deuterium oxide dilution in vivo neutron activation analysis
LXRα	Liver x receptor α
MAC	Mid arm circumference
MAMC	Mid-arm muscle circumference
MDA	Malondialdehyde
MELD	Model of end stage liver disease
MI	Myo inositol
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
mTOR	mammalian target of rapamycin
mTORC1	mammalian target of rapamycin complex one
MTP	Microsomal triglyceride transfer protein
NAA	N –acetyl aspartate
NAFLD	Non Alcholic Fatty Liver disease

NASH	Non Alcholic Steato Hepatitis
NGO	Nongoverenmental Organization
NHANES	National Health and Nutrition Examination Survey
NS5A	Nonstructural protein 5 A
OLT	Orthotropic liver transplantation
PCM	Protein calorie malnutrition
PDK1/2	Phosphoinositide-dependant kinase
PEG	Per cutaneous endoscopic gastrostomy
PELD	Pediatric end stage liver disease
PEM	Protein energy malnutrition
PH	Pulmonary hypertension
PHES	Psychometric hepatic encephalopathy scor
PI3K	Phosphatidyl insositol-3-kinase
PN	Parenteral nutrition
РоН	Portal hypertension
PPAR	Peroxisome Proliferator-Activated Receptor
PPH	Porto pulmonary hypertension
PSHE	Porto systemic hepatic encephalopathy
PST	Performance status test
RDA	Recommended dietary allowance
REE	Resting Energy Expenditure
RFA	Radio Frequency Ablation
RHC	Right sided heart catheterization
SAAG	Serum to ascites albumin gradient.
SBP	Spontaneous bacterial peritonitis
SCE	Subclinical encephalopathy
SGA	Subjective global assessment
SREBP1c	Sterol regulatory element binding protein Ic
T2DM	Type 2 Diabetes Mellitus
TBP	Total body potassium counting
Tc99-MMA	Technetium macro aggregated albumin

TGF-β	Transforming growth factor β
TIPSS	Trans internal jugular portosystemic shunting
TST	Triceps skinfold thickness
V/Q	Ventilation perfusion
VLDL	Very-low-density lipoproteins
WHO	World Health Organization

List Of Tables

Table.	Title	Page.
No	Child Tungette Duch seeming system	No
1	Child -Turcotte-Pugh scoring system	24
2	Metabolic alterations in liver cirrhosis	26
3	Physical signs of nutritional deficiencies	73
4	Etiology of malnutrition in liver cirrhosis	87
5	Standard approach for nutritional management in liver cirrhosis	91
6	Suggested Guidelines for improving oral intake	92
7	Barriers to enteral support in hepatic failure	94
8	Suggested Fat soluble vitamin replacement in cholestasis	99
9	Summary of statements of the ESPEN Guidelines on Enteral Nutrition 2006 : Liver cirrhosis (LC)	106
10	Comparison of the age, anthropometric measures (BMI,TST, MAMC, MAC and subscapular SFT), protein and caloric intake between the different studied groups.	116
11	Comparison of the different laboratory variables between different studied groups.	117
12	Comparison of the different components of the SGA and SGA rating in the studied groups	118
13	Gender differences in anthropometric measures (TST, MAMC, MAC and subscapular SFT) in patients with HCV-related cirrhosis.	120
14	Gender differences in anthropometric measures (TST and MAMC, MAC and subscapular SFT) in patients with chronic hepatitis C.	122
15	Gender differences in anthropometric measures (TST, MAMC, subscapular skin fold thickness and MAC) in controls.	123
16	Comparison of daily intake levels of calories and protein among the cirrhotic patients, chronic hepatitis C patients and controls.	124
17	Comparison between caloric and protein intake in accordance with the gender of patients with HCV-related cirrhosis group.	126

	Comparison between caloric and protein intake in	
18	accordance with gender in patients with chronic	
	hepatitis C.	127
19	Comparison between the different studied groups	
19	regarding BMI.	128
	Comparison between the daily caloric and protein	
20	intake in accordance with BMI in HCV-related	
	cirrhosis group.	130
	Comparison between caloric and protein intake in	
21	accordance with BMI of patients in chronic hepatitis	
	group.	131
22	Comparison between the daily caloric and protein	
22	intake in HCV-related cirrhosis group.	132
23	Comparison between the daily caloric and protein	
23	intake in chronic HCV group.	133
	Comparison between nutritional status assessment by	
24	the different anthropometric measures (TST, MAMC,	
4	MAC, Sub-scapular SFT) and the SGA rating in	
	HCV- related cirrhosis group.	134
	Comparison between nutritional status assessment by	
25	the different anthropometric measures (TST, MAMC,	
	MAC, Sub scapular SFT) and the SGA rating in the	
	chronic hepatitis C group.	136
	Comparison of the nutritional status among the	
26	groups based on the different anthropometric	
	measures and SGA.	138
	Correlation of BMI with anthropometric measures	
27	and SGA in HCV -related cirrhosis (LC),CHC&	
	control groups.	141

List of Figures and Diagrams

Fig.		Page.
No	Title	No
1	Gross and microscopic picture of normal and cirrhotic liver	8
2	Insulin pathway and glucose receptors in skeletal muscles.	28
3	Insulin signaling.	30
4	Insulin promotes food stores.	31
5	Inter relation between insulin resistance ,HCV,NAFLD	
3	and NASH.	33
6	Relation between insulin resistance and cytokines.	41
7	Pathogenesis of NAFLD(a,b,c,d)	51-55
8	Tentative explanation of the pathogenesis of HCV - induced	
ð	type 2 D.M and related outcomes.	57
9	Subjective Global Assessment	
	Subjective Global Assessment	75
10	Triceps skin fold thickness measurement	80
11	Scheme for determination of nutritional status	82
12	Hand grip measurement	84
13	Enteral nutrition via naso-gastric tube	94
14	Comparison of the nutritional status among the groups	
	based on SGA.	119
15	Comparison of daily intake levels of calories among the	
	cirrhotic patients, chronic hepatitis C patients and controls	125

16	Comparison of daily intake levels of protein among the cirrhotic patients, chronic hepatitis C patients and controls	125
17	Comparison of BMI among different studied groups	129
18	Comparison of the nutritional status among the groups based on %TST.	139
19	Comparison of the nutritional status among the groups based on %MAMC.	140
20	Comparison of the nutritional status among the groups based on subscapular skin fold thickness.	140
21	Correlation of BMI with % TST in HCV -related cirrhosis (LC) group.	142
22	Correlation of BMI with % MAMC in HCV -related cirrhosis (LC) group.	143
23	Correlation of BMI with % TST in chronic hepatitis C group.	143
24	Correlation of BMI with % MAMC in chronic hepatitis C group.	144
25	Correlation of BMI with SGA in HCV related cirrhosis C group.	144
26	Correlation of BMI with SGA in chronic hepatitis C group.	145

INTRODUCTION

= 100

Nutritional status of patients with liver cirrhosis have recently shown great diversity, some show protein energy malnutrition and others excessive nutrition and obesity. Many studies have investigated energy and protein metabolism in cirrhotic patients; however there are few studies regarding nutritional intake in patients with hepatitis C virus (HCV)-related liver cirrhosis (LC-C) (Yasutake et al., 2012).

Nutritional status is considered a predictor of morbidity and mortality in patients with advanced hepatic disease. PEM in cirrhotic patients also has important implications in liver transplantation and it has been demonstrated that patients with a worse nutritional status before the transplant have increased postoperative complications and higher mortality rates (Cheung et al., 2012 and Vanessa and Orlando, 2012)

It has been reported that protein energy malnutrition (PEM) is a frequent finding in patients with liver cirrhosis (LC), and its onset and/or severity increases with the progression of liver dysfunction mainly in situations of metabolic stress associated with the presence of infection and/or hospitalization. Malnutrition has been found to be as common as 80% among cirrhotic patients (**Kalaitzakis et al.,2006**) even in patients classified as Child- Pugh class A, the prevalence of malnutrition was as high as 25 % (**Guglielmi et al.,2005**).