FAULT ZONE DISCRIMINATION AND FAULT LOCATION FOR SERIES FACTS-BASED TRANSMISSION LINES

By

Ahmed Nasr Zeinhom Hassan

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2016

FAULT ZONE DISCRIMINATION AND FAULT LOCATION FOR SERIES FACTS-BASED TRANSMISSION LINES

By

Ahmed Nasr Zeinhom Hassan

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Mahmoud Ibrahim

Associate Prof. Dr. Doaa Khalil

Gilany

Ibrahim

Faculty of Engineering,

Faculty of Engineering,

Cairo University

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016

FAULT ZONE DISCRIMINATION AND FAULT LOCATION FOR SERIES FACTS-BASED TRANSMISSION LINES

By

Ahmed Nasr Zeinhom Hassan

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the

Examining Committee

Prof. Dr. Mahmoud Ibrahim Gilany

Prof. Dr. Hany Mohamad Amin Elghazaly

Prof. Dr. Mohamed Mostafa Sallam

External Examiner

Faculty of Engineering – Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2016

ACKNOWLEDGMENTS

First of all, thanks to Allah who supported and strengthened me in all of my life and in completing my studies for the Master of Science (M.Sc.) degree.

I would like deeply to express my thanks and gratitude to my supervisors; Prof. Dr. Mahmoud Gilany and Associate Prof. Dr. Doaa Khalil Ibrahim, Electrical Power and Machines Department, Faculty of Engineering, Cairo University for their faithful supervision, enormous efforts, and their great patience during the period of the research.

Also, I would like to thank all my fellow colleagues for their support to me. I want also to express thanks to Eng. Ahmed Amin for his important advices during my work. Also, I don't want to forget my supervisors at DAR Engineering; Eng. Mansour Hussein, Eng. Mohamed Mostafa, and Eng. Ahmed Rashed for their great support during my study.

Moreover, I would like to thank MathWorks for their valuable support with student and trial versions of MATLAB/SIMULINK software package.

Finally, I would like to thank my family for their great inspiration, kind support, and continuous encouragement.

TABLE OF CONTENTS

ACK	NOW	LEDGMENTS	i
TABI	LE O	F CONTENTS	ii
LIST	OF T	ABLES	iv
LIST	OF F	TIGURES	vi
LIST	OF S	YMBOLS AND ABBREVIATIONS	.viii
ABST	RAC	Т	xi
		R (1): INTRODUCTION	
1.1.		kground	
1.2.		blem Statement	
1.3.	The	sis Objectives	4
1.4.	The	sis Organization	5
DISC	RIM	R (2): LITERATURE REVIEW FOR FAULT ZONE INATION AND FAULT LOCATION FOR SERIES-SATED LINES	6
2.1.	Intr	oduction	6
2.2.	Sing	gle-Ended Fault Location Algorithms	6
2.3.	Dou	ıble-Ended Fault Location Algorithms	9
2.	3.1.	Synchronized Fault Location Algorithms	10
2.	3.2.	Unsynchronized Fault Location Algorithms	10
2.4.		ficial Intelligent Algorithms for Improving Distance Protection	
2.5.		aptive Algorithms for Improving Distance Protection	
2.6. Com		sting Solutions for Distance Protection Problems due to Series Compensational Relays	
2.	6.1.	SIPROTEC 7SA522 Multifunction Distance Relay	13
2.	6.2.	MiCOMho P446 Multifunction Distance Relay	15
	ition A	tivation for the Development of Proposed Fault Zone Discrimination and Faulgorithm	15
FAUI	LT LO	R (3): PROPOSED FAULT ZONE DISCRIMINATION AND CATION ALGORITHM FOR SERIES FACTS-SATED TRANSMISSION LINES	
3.1.		e Study Description	
3.2.		pacts of Series FACTS Compensation on Conventional Distance Protection	
	2.1.	Underreaching Challenge	
3.2.2.		Blocking Scheme Challenge	
3.2.3.		Overreaching Zone Setting Challenge	
3.	2.4.	Nonlinear Operation of MOV	27
3 3	Fau	It Zone Discrimination using Fault Loop Resistance	28

3.4.	Proposed I	ntegrated Algorithm	29
3.4.	I. Onlin	e Parameters Calculation Subroutine	30
3.	4.1.1.	Series FACTS Reactance Calculation	31
3.	4.1.2.	Fransmission Line Impedance Calculation	32
3.4.2	2. Fault	Zone Discrimination Subroutine	33
3.	4.2.1. I	ntroduction	33
3.	4.2.2. N	Methodology	34
3.4.3	3. Fault	Location Subroutine	35
CHAP ₁	TER (4):	SIMULATION RESULTS AND DISCUSSION	41
4.1.	Results for	Online Parameters Calculation Subroutine	41
4.1.		of the Changes in the Series Compensation Degree	
4.1.2		of the Changes in the Pre-fault Loading	
4.1.3	3. Effect	of the Changes in the Line Parameters	45
4.2.	Results for	Fault Zone Discrimination Subroutine	48
4.3.	Results for	Fault Location Subroutine	48
4.3.	I. Effect	t of the Changes in the Fault Inception Angle	49
4.3.2	2. Effect	of the Changes in the Fault Resistance	50
4.3.3	3. Effect	of the Synchronization Errors	51
4.3.4	4. Effect	of the MOV Nonlinear Operation	52
4.3.5	5. Effect	of the Consideration of a TCSC as a Controlled FACTS	53
4.3.0	6. Effect	of the Changes in the TCSC Series Compensation Degree	54
4.4.	Performan	ce Evaluation of the Overall Proposed Algorithm	55
CHAP	TER (5):	EVALUATION, CONCLUSION AND SUGGESTER	D
FUTUF	RE WOR	K	58
5.1.	Conclusion	1	58
5.2.		ts of Discussion	
5.3.	Suggestion	s for Future Work	59
PUBLI	SHED W	ORK	66
APPEN	DIX (A):	ONLINE PARAMETER CALCULATION M-FILES	S67
A PPEN	DIX (R)	FAULT LOCATION CALCULATION M-FILES	75

LIST OF TABLES

Table 3.1: Real case study system parameters20
Table 4.1: Calculation of the series compensation reactance at different compensation
degrees
Table 4.2: Calculation of the transmission line series resistance at different
compensation degrees
Table 4.3: Calculation of the transmission line series inductance at different
compensation degrees
Table 4.4: Calculation of the transmission line stray capacitance at different
compensation degrees
Table 4.5: Calculation of the series compensation reactance at different power transfer
angles
Table 4.6: Calculation of the transmission line series resistance at different power
transfer angles
Table 4.7: Calculation of the transmission line series inductance at different power
transfer angles
Table 4.8: Calculation of the transmission line stray capacitance at different power
transfer angles
Table 4.9: Calculation of the series compensation reactance at different changes in the
initial value45
Table 4.10: Calculation of the transmission line series resistance at different changes
in the initial value
Table 4.11: Calculation of the transmission line series inductance at different changes
in the initial value
Table 4.12: Calculation of the transmission line stray capacitance at different changes
in the initial value
Table 4.13: Sign of travelling wave reflection time differences for faults on lines S-M
and M–R
Table 4.14: Fault location results at 0.0° fault inception angle
Table 4.15: Fault location results at 45° fault inception angle50
Table 4.16: Fault location results at 90° fault inception angle50
Table 4.17: Fault location results at 1 Ω fault resistance
Table 4.18: Fault location results at 10Ω fault resistance

Table 4.19: Fault location results at 5° synchronization error	52
Table 4.20: Fault location results with the consideration of MOV nonlinear operation	on
	53
Table 4.21: Fault location results with the consideration of TCSC with 45% series	
compensation degree	54
Table 4.22: Fault location results at 100 km with the consideration of TCSC with	
different series compensation degrees	54
Table 4.23: Comparison between the proposed method and three other algorithms	
used for compensated lines	56

LIST OF FIGURES

Figure 1.1: Thyristor-Switched Series Capacitor (TSSC)
Figure 1.2: Thyristor-Controlled Series Capacitor (TCSC)
Figure 1.3: GTO-Controlled Series Capacitor (GCSC)
Figure 1.4: Static VAR Compensators (SVC): (a) Thyristor-Controlled Reactor (TCR)
and (b) Thyristor-Switched Capacitor
Figure 2.1: Block diagram of the first zone algorithm in [16]
Figure 2.2: Proposed protection scheme in [32]. Fault classification (SVM-1), ground
detection (SVM-2), and section identification (SVM-3)12
Figure 2.3: Voltage reversal effect in series-compensated transmission line13
Figure 2.4: Faults in front of and behind the series capacitor14
Figure 2.5: Directional characteristics for faults in front of the series capacitor14
Figure 2.6: Directional characteristics for faults behind the series capacitor15
Figure 3.1: Active power transfer over one transmission line before and after the
installation of FSC
Figure 3.2: H-connection configuration for series capacitor unbalance protection
scheme
Figure 3.3: FSC substation switchyard layout
Figure 3.4: Series capacitors in FSC substation
Figure 3.5: Series capacitor platform in FSC substation
Figure 3.6: SF6 gas insulating bus-duct (GIB) arrangement in FSC substation22
Figure 3.7: Main switching single line diagram of FSC network23
Figure 3.8: Series-compensated transmission system with real tested case study with
FSC
Figure 3.9: Series-compensated transmission system of the tested case study with
TCSC
Figure 3.10: Compensated reactance measured at each terminal
Figure 3.11: Blocking communication scheme logic for distance protection27
Figure 3.12: Zone 2 overreaching problem of distance protection due to the presence
of series compensation
Figure 3.13: Nonlinear characteristics of different types of MOV28
Figure 3.14: Block diagram of the complete online parameters calculation subroutine
33

Figure 3.15: Fault zone discrimination between faults in front of and behind the	
series-connected FACTS	34
Figure 3.16: Block diagram of the complete fault location subroutine	37
Figure 3.17: Flowchart for the complete proposed algorithm	40

LIST OF SYMBOLS AND ABBREVIATIONS

• Symbols

Δt	Travelling wave reflection time difference in seconds
$ m I_F$	Fault current in kA
$ m I_{F1}$	Left-hand side component of fault current in kA
$ m I_{F2}$	Right-hand side component of fault current in kA
I_{M}	Fundamental-frequency positive-sequence current at terminal M in Volt
I_R	Fundamental-frequency positive-sequence current at terminal R in Volt
I_S	Fundamental-frequency positive-sequence current at terminal S in kV
K_{SE}	Degree of Series Compensation in %
L	Total line length (either S-M or M-R) in km
R_F	Fault resistance in Ω
V_{F}	Fault voltage in kV
V_{M}	Fundamental-frequency positive-sequence voltage at terminal M in kV
V_R	Fundamental-frequency positive-sequence voltage at terminal R in kV
V_{S}	Fundamental-frequency positive-sequence voltage at terminal S in kV
x	Fault location in km
$X_{\rm C}$	Series compensation reactance in Ω
y	Transmission line shunt admittance per unit length in Mho/km
Z	Transmission line series impedance per unit length in Ω/km
Z_0	Surge impedance in Ω
γ	Propagation constant in rad./km

Abbreviations

AC Alternating Current

DWT Discrete Wavelet Transform

EHV Extra High Voltage

FACTS Flexible Alternating Current Transmission Systems

FFT Fast Fourier Transform

FPFM Feeder Protection First Main

FPSM Feeder Protection Second Main

FSC Fixed Series Compensation

GCSC GTO Thyristor-Controlled Series Capacitor

GPS Global Positioning System

HVDC High Voltage Direct Current

IED Intelligent Electronic Device

MOV Metal-Oxide varistor

MSC Mechanically-Switched Capacitor

PMU Phasor Measurement Unit

RCA Relay Characteristic Angle

SEC Saudi Electricity Company

SSSC Static Synchronous Series Compensator

STATCOM Static Synchronous Compensator

SVC Static VAR Compensator

SVM Support Vector Machine

TCR Thyristor-Controlled Reactor

TCSC Thyristor-Controlled Series Capacitor

TCSR Thyristor-Controlled Series Reactor

TDNN Time-Delayed Neural Network

TSC Thyristor-Switched Capacitor

TSR Thyristor-Switched Reactor

TSSC Thyristor-Switched Series Capacitor

TSSR Thyristor-Switched Series Reactor

UHV Ultra High Voltage

UPFC Unified Power Flow Controller

ABSTRACT

Discrimination and location of faults in Flexible Alternating Current Transmission Systems (FACTS) have several challenges in modern power systems. This is because of the errors in the measured impedance as a result of the changes caused by FACTS' controllers to improve the power system performance. The presence of series FACTS device in a transmission line complicates both the fault location and the discrimination procedure between faults in front of and behind and the FACTS device.

This thesis proposes an integrated solution for both fault zone discrimination (either in front of or behind the FACTS device) and fault location for series FACTS-compensated transmission lines. In the proposed online calculations of the exact series-compensated algorithm, parameters are carried out continuously in normal conditions (pre-fault calculations) to estimate the actual percentage of compensation. After fault inception, a wavelet-based subroutine is applied to decide whether the fault is in front of the FACTS device or behind it. Then, a conventional distance protection algorithm is used to estimate the fault zone. Finally, synchronized data signals from both ends are used to accurately locate the exact fault location offline.

The complete algorithm is tested using a real data for a 380 kV, 400 km series-compensated transmission line in Saudi Arabia using MATLAB/SIMULINK. Different types of grounded and ungrounded faults, fault locations, fault resistances, fault inception angles, series FACTS types, compensation levels, power transfer angles, and synchronization errors are applied to validate the effectiveness of the proposed algorithm. Metal-Oxide Varistor (MOV) nonlinear operation is also taken into account. Extensive simulation results show the effectiveness and robustness of the proposed algorithm.

CHAPTER (1): INTRODUCTION

1.1. Background

Fast-growing electrical power demand is a challenge that faces almost all power systems all over the world. In order to meet the steadily increasing electrical power demand, large investments are required to construct new transmission. and distribution facilities. This constraint is added to the right of way constrains which limit the ability of the power system expansion. Accordingly, the gap between the and the available electrical power electrical power demand generation increases which in-turn affects the system stability and the continuity of supply.

As a result of that increasing in the electrical power demand, Flexible Alternating Current Transmission Systems (FACTS) are introduced in modern power systems as powerful techniques to improve the power system performance. These FACTS techniques are used extensively in modern Extra High Voltage (EHV) and Ultra High Voltage (UHV) transmission systems in order to avoid or postpone the construction of new lines and to cope with the fast-growing electrical power demand.

The Institute of Electrical and Electronics Engineers (IEEE) defines the FACTS as "a power electronic based system and other static equipment that provide control of one or more alternating current transmission system parameters to enhance controllability and increase power capability" As the power transfer on an alternating current (AC) [1]. transmission system is restricted by thermal limit, voltage stability, and transient stability limits, the role of the FACTS devices is to control the power system parameters in order to raise both the voltage stability and transient stability limits, which allow for higher power transfer and better system operability [2]. The main applications of FACTS devices in modern power systems are summarized as follows [2], [3], [4]:

- Boosting of power transfer capability,
- Reactive power compensation,
- Power flow control,
- Voltage control,
- Improvement of power factor,
- Improvement of transient stability,
- Improvement of power quality,
- Interconnection of renewable energy and other distributed generation resources.