

ON ENHANCING THE PERFORMANCE OF BUFFERLESS NETWORK-ON-CHIP

By

Mohamed Assem Abd ElMohsen Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

ON ENHANCING THE PERFORMANCE OF BUFFERLESS NETWORK-ON-CHIP

By Mohamed Assem Abd ElMohsen Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Under the Supervision of

Dr. Hatem M. El-Boghdadi

Professor Computer Engineering Department Faculty of Engineering, Cairo University

ON ENHANCING THE PERFORMANCE OF BUFFERLESS NETWORK-ON-CHIP

By Mohamed Assem Abd ElMohsen Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Approved by the Examining Committee

Dr. Hatem M. El-Boghdadi, Thesis Main Advisor

- Professor at the Faculty of Engineering, Cairo University

Dr. Amr G. Wassal, Internal Examiner

- Associate Professor at the Faculty of Engineering, Cairo University

Prof. Dr. Mohammad Z. Abdel Majeed, External Examiner

- Professor at the Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Mohamed Assem Abd ElMohsen

Ibrahim

Date of Birth:07/07/1988Nationality:Egyptian

E-mail: mohamedassem@eng.cu.edu.eg

Phone: +2 01007846437

Address: 407N, Pyramids Gardens

Giza, Egypt

Registration Date: 01/10/2010
Awarding Date:/2016
Degree: Master of Science
Department: Computer Engineering

Supervisors: Dr. Hatem Mahmoud El-Boghdadi

Examiners: Prof. Dr. Mohammad Zaki Abdel-Majeed (External

examiner)

- Professor at the Faculty of Engineering, Al-Azhar University Dr. Amr Jalal El-Deen Wassal (Internal examiner) Dr. Hatem Mahmoud El-Boghdadi (Thesis main

advisor)

Title of Thesis:

On Enhancing the Performance of Bufferless Network-on-Chip

Key Words:

Bufferless Network-on-Chip; Selection Function; Maximum Flexibility; Ranking Policies; Congestion Management;

Summary:

With the arrival of chip multiprocessor systems, Network-on-Chip (NoC) has started to form the backbone of communication within a microprocessor chip. However, unfortunately, the performance of NoC is bounded by the limited power and area budgets. Bufferless NoC has emerged as a solution to reduce power and area. Bufferless NoC eliminates the buffers used for routing and/or flow control and handle contention using packet dropping or packet deflection. In this thesis, we focus on enhancing the performance (latency and deflection count) of deflection-based bufferless NoC running latency-sensitive applications.

First, we present an analytical study for the traffic in bufferless NoC under the Maximum Flexibility (MaxFlex) selection function with different step sizes. We also provide an experimental study under MaxFlex. Simulation results show that with large values of step size, the latency could be reduced by 97% over using Straight Line selection function. The proposed analysis explains the outperforming experimental results.

Then we propose different flit ranking policies that focus on decreasing the deflection count of the flits. Simulation results show that the proposed ranking policies can reduce the latency by up to 58% compared to Oldest First policy.

Finally, we consider relaxing the effect of congestion in bufferless NoC under high injection rate. We propose two approaches for congestion prevention. The first considers running applications on NoC with extra nodes. The second considers dividing a certain load into a sequence of lighter loads. Simulation results show that the proposed approaches enhance the latency by up to 61% in addition to operating at higher injections rates.

Acknowledgments

بسم الله الرحمن الرحيم

"سُبْحَانَكَ لَا عِلْمَ لَنَا إِلَّا مَا عَلَّمْتَنَا أَ إِنَّكَ أَنتَ الْعَلِيمُ الْحَكِيمُ (٣٢)" البقرة.

"Glory to You (O Lord), we have no knowledge except what you have taught us. Indeed, it is You who is the knowing, the wise (32)" Al-baqarah

" وَمَا تَوْفِيقِي إِلَّا بِاللَّهِ أَ عَلَيْهِ تَوَكَّلْتُ وَإِلَيْهِ أُنِيبُ (٨٨)" هود.

"And my success is not but through Allah. Upon him I have relied and to Him I return (88)" Hood.

I would like to express my sincere gratitude to my advisor, Dr. Hatem El-Boghdadi, for his huge support, patience and immense knowledge. His guidance helped me in all the time of working on this thesis. I could not have imagined having a better advisor and mentor for my masters study.

Also, I take this opportunity to express gratitude to all of the Computer Engineering department members for their help and support.

I would like to thank my family for their encouragement, support, and attention without which I would never have made it to the end.

Last but not the least; I would like to thank my wife, Yousra, for being always there for me and for her support and kindness. My uttermost gratitude goes to Allah that I met her in such critical point in my life.

Table of Contents

ACKNOWLED	GMENTS	I
TABLE OF CO	NTENTS	II
LIST OF TABL	.ES	V
LIST OF FIGU	RES	VI
ABSTRACT		X
CHAPTER 1 : I	INTRODUCTION	1
1.1.	BASIC BACKGROUND	2
1.1.1.	Buffered NoCs	
1.1.2.	Bufferless NoCs	
1.1.3.	Selection Functions	3
1.1.4.	Maximum Flexibility Selection Function	3
1.1.5.	Flit Ranking Policies	4
1.1.6.	Congestion Management	4
1.2.	RELATED WORK	5
1.3.	SCOPE OF THE THESIS	6
1.3.1.	Increasing and Varying Step Size Under MaxFlex	7
1.3.2.	Evaluating Flit Ranking Policies	
1.3.3.	Preventing the Congestion	8
1.4.	CONTRIBUTION OF THE THESIS	8
1.5.	ORGANIZATION OF THE THESIS	9
CHAPTER 2 : I	BACKGROUND	10
2.1.	Interconnection Network	10
2.2.	NETWORK-ON-CHIP (NoC)	11
2.3.	BUFFERLESS NETWORK-ON-CHIP	12
2.4.	SELECTION FUNCTIONS	13
2.5.	FLIT RANKING POLICIES	14
2.6.	CONGESTION MANAGEMENT	
CHAPTER 3	: MODIFIED MAXIMUM FLEXIBILITY SI	ELECTION
FUNCTION		16
3.1.	PROPOSED APPROACH	16
3.2.	ANALYSIS OF MMAXFLEX SELECTION FUNCTION	17
3.2.1.	Type 1 Packets	
3.2.2.	Type 2 Packets	
3.2.3.	Type 3 Packets	
3.2.4.	Type 4 Packets	
3.2.5.	Type 5 Packets	
3.2.6.	Type 6 Packets	
3.2.6.1.	Type 6 (a)	25

3.2.6.2.	Type 6 (b)	27
3.2.6.3.	Type 6 (c)	
3.2.6.4.	Type 6 (d)	
3.2.7.	Type 7 Packets	
3.2.7.1.	Type 7 (a)	
3.2.7.2.	Type 7 (b)	
3.2.7.3. 3.2.7.4.	Type 7 (c)	
3.2.8.	Type 8 Packets	
3.2.8.1.	Type 8 (a)	
3.2.8.2.	Type 8 (a)	
3.2.9.	Type 9 Packets	
3.2.9.1.	Type 9 (a, c)	
3.2.9.2.	Type 9 (b, d)	
3.2.10.	Type 10 Packets	
3.2.10.1.	Type 10 (a, c)	
3.2.10.2.	Type 10 (b, d)	39
3.2.11.	Type 11 Packets	40
3.2.11.1.	Type 11 (a)	40
3.2.11.2.	Type 11 (b)	
3.2.11.3.	Type 11 (c)	
3.2.11.4.	Type 11 (d)	
3.2.12.	Type 12 Packets	
3.2.12.1. 3.2.12.2.	Type 12 (a)	
3.2.12.2.	Type 12 (c)	
3.2.12.4.	Type 12 (d)	
3.2.13.	Summary of Packets Count Calculations	
3.3.	PROOF OF PACKET TYPES COMPLETENESS	49
3.4.	PACKETS DISTRIBUTION ANALYSIS RESULTS	
3.5.	EXPERIMENTAL SETUP	
3.5.1.		
	Experimental Methodology	
3.5.2.	Interconnection Network Model	
3.5.3.	Evaluation Metrics	
3.6.	SIMULATION RESULTS	
3.7.	ESTIMATION OF THE VALUE OF THE STEP SIZE	55
3.8.	CONCLUDING REMARKS	55
CIIADTED 4	. MADIADIE CTED CUZE MANIMUM ELEVIDII	TTTX
CHAPTER 4	: VARIABLE STEP SIZE MAXIMUM FLEXIBIL	
SELECTION FU	UNCTION	56
4.1.	MOTIVATION	56
4.2.	PROPOSED VARIABLE STEP SIZE APPROACHES	56
4.2.1.	Using the Manhattan distance between NoC nodes (NMDVS)	
4.2.2.		
	Using the Manhattan distance between NoC regions (RMDVS)	
4.2.3.	Using In-Region and Out-Region routing (IORVS)	
4.2.4.	Using the Manhattan distance between NoC nodes for Out-Re	-
•	(DVS)	
4.3.	SIMULATION RESULTS	59
4.4.	CONCLUDING REMARKS	73

	: NEW FLIT RANKING POLICIES FOR DEFLECTION	
BUFFERLES	S NOCS	75
5.1.	MOTIVATION	75
5.1.1.	Oldest First Ranking Policy (OF)	75
5.1.2.	Most Deflection First Ranking Policy (MDF)	
5.2.	PROPOSED FLIT RANKING POLICIES	
5.2.1.	Deflection Age Ratio Ranking Policy (DAR)	
5.2.2.	Deflection Distance Ratio Ranking Policy (DDR)	
5.2.3.	Last Dimension Ranking Policy (LD)	
5.3.	SIMULATION RESULTS	
5.4.	CONCLUDING REMARKS	79
CHAPTER	6 : TIME-SENSITIVE CONGESTION MANA	GEMENT
MECHANISN	MS	80
6.1.	MOTIVATION	80
6.2.	PROPOSED APPROACHES	81
6.2.1.	Using Larger NoCs (LNoC)	81
6.2.2.	Using Sequential Injection (SI)	81
6.3.	SIMULATION RESULTS	82
6.4.	Concluding Remarks	85
CHAPTER 7	: DISCUSSION AND CONCLUSION	86
7.1.	FUTURE WORK	86
REFERENCE	ES	88
APPENDIX A	a: 2D MESH TERMINOLOGIES	92
PUBLICATIO	ONS	94

List of Tables

Table 1: Up traffic passing through switch C	23
Table 2: Type 5 Count calculation for an increasing diagonal switches under up t	raffic
using different SS values	
Table 3: Down traffic passing through switch C	24
Table 4: Type 5 Count calculation for an increasing diagonal switches under	
traffic using different SS values	24
Table 5: Up traffic passing through switch C_{Solid}	27
Table 6: Type 6(a) Count calculation for the solid diagonal switches under up t	raffic
using different SS values	
Table 7: Type 6(a) Count calculation for the dotted diagonal switches under up t	raffic
using different SS values	27
Table 8: Down traffic communication passing through switch D_{Dotted}	28
Table 9: Type 6(b) Count calculation for the dotted diagonal switches under	down
traffic using different SS values	28
Table 10: Type 6(b) Count calculation for the solid diagonal switches under	down
traffic using different SS values	28
Table 11: Down traffic passing through switch A	33
Table 12: Summary for the data collected in Table 11	33
Table 13: Down traffic passing through switch B	33
Table 14: Down traffic passing through switch C	34
Table 15: Down traffic passing through switch D	34
Table 16: Up traffic passing through switch Z_{Solid}	42
Table 17: Up traffic passing through switch Y_{Solid}	45
Table 18: Formulas for different traffic types	47
Table 19: Common variables used in Table 19	49
Table 20: A and B values for up and down traffic	49
Table 21: Multiplier value for Type 8, Type 9 and Type 10	49
Table 22: Values for Type 9 up traffic communication	
Table 23: First category cases	50
Table 24: Second category cases	50
Table 25: Step size to mesh dimension percentage	55

List of Figures

Figure 1: Generic switch in a 2D mesh	
Figure 2: Example of interconnection network	
Figure 3: Generic switch in a 2D mesh	11
Figure 4: The operation of MaxFlex selection function using step size of one	13
Figure 5: The operation of MaxFlex selection function using step size of one	
Figure 6: Increasing and decreasing diagonals in a 2D mesh	18
Figure 7: Up and down traffic in 2D mesh	
Figure 8: Location of $W(i,j)$ in 2D mesh row	
Figure 9: Type 3 example for a row in 5x5 and 6x6 meshes	
Figure 10: Type 3 <i>Count</i> calculation for a row switch in a 5x5 mesh	
Figure 11: Location of $W(i,j)$ in 2D mesh diagonal	
Figure 12: Type 5 example for an increasing diagonal	
Figure 13: Type 6 example for an increasing diagonal under both up and down traf	
E' 14 I .' CH/(')' AD 1 1' 1	
Figure 14: Location of $W(i,j)$ in 2D mesh diagonal	
Figure 15: Type 7 example for an increasing diagonal under both up and down traf	
Figure 16: Type 8 example for an increasing diagonal in a 12x12 mesh	
Figure 17: Procedure for counting the packets passing through a switch for Type 8(a	*
Figure 18: Procedure for counting the packets passing through a switch for Type 8(b	
Figure 19: Procedure for counting the packets passing through a switch for Type 9(a	a, c)
	37
Figure 20: Procedure for counting the packets passing through a switch for Type 9(b	
Figure 21: Procedure for counting the packets passing through a switch for Type 1	0(a,
c)	
Figure 22: Procedure for counting the packets passing through a switch for Type 19	
d)	
Figure 23: Location of $W(i,j)$ in 2D mesh	
Figure 24: Type 11 example for an increasing diagonal under both up and down traff	
1 igure 24. Type 11 example for an increasing diagonal under both up and down train	
Figure 25: Type 12 example for an increasing diagonal under both up and down traf	
Figure 26. Number of market massing through sample harder and some switches	
Figure 26: Number of packet passing through sample border and core switches	
different fixed step size values	
Figure 27: Average packet latency for different fixed step size values	
Figure 28: Average deflection count for different fixed step size values	
Figure 29: Average packet latency for different fixed step sizes at flit injection rate	
0.22 flit/cycle/node	
Figure 30: Average packet latency for fixed step size of 8 compared with diffe	rent
selection functions	
Figure 31: Average deflection count for fixed step size of 8 compared with diffe	
selection functions	54
Figure 32: 4x4 mesh divided into four 2x2 regions	57
Figure 33: Average packet latency for NMDVS using different % values	
Figure 34: Average deflection count for NMDVS using different % values	

Figure 35: Average packet latency for RMDVS compared with RMDVS`	61
Figure 36: Average deflection count for RMDVS compared with RMDVS`	61
Figure 37: Average packet latency for different SSOutRegion values u	nder in
SSInRegion = 1 using 2x2 region size	62
Figure 38: Average packet latency for different SSOutRegion values u	nder in
SSInRegion = 1 using 5x5 region size	62
Figure 39: Average deflection count for different SSOutRegion values u	ınder in
SSInRegion = 1 using 2x2 region size	
Figure 40: Average deflection count for different SSOutRegion values u	
SSInRegion = 1 using 5x5 region size	
Figure 41: Average packet latency for different SSOutRegion values u	nder in
SSInRegion = 2 using 2x2 region size	63
Figure 42: Average packet latency for different SSOutRegion values u	
SSInRegion = 2 using 5x5 region size	
Figure 43: Average deflection count for different SSOutRegion values u	
SSInRegion = 2 using 2x2 region size	
Figure 44: Average deflection count for different SSOutRegion values u	ınder in
SSInRegion = 2 using 5x5 region size	63
Figure 45: Average packet latency for different SSOutRegion values u	
SSInRegion = 3 using 2x2 region size	
Figure 46: Average packet latency for different SSOutRegion values u	ınder in
SSInRegion = 3 using 5x5 region size	
Figure 47: Average deflection count for different SSOutRegion values u	
SSInRegion = 3 using 2x2 region size	111uci 111
Figure 48: Average deflection count for different SSOutRegion values u	04 Indon in
SSInRegion = 3 using 5x5 region size	04
SSInRegion = 4 using 2x2 region size	
Figure 50: Average packet latency for different SSOutRegion values u	
SSInRegion = 4 using 5x5 region size	05
Figure 51: Average deflection count for different SSOutRegion values u	
SSInRegion = 4 using 2x2 region size	
Figure 52: Average deflection count for different SSOutRegion values u	
SSInRegion = 4 using 5x5 region size	
Figure 53: Average packet latency for different SSOutRegion values u	
SSInRegion = 5 using 2x2 region size	
Figure 54: Average packet latency for different SSOutRegion values u	
SSInRegion = 5 using 5x5 region size	
Figure 55: Average deflection count for different SSOutRegion values u	
SSInRegion = 5 using 2x2 region size	
Figure 56: Average deflection count for different SSOutRegion values u	
SSInRegion = 5 using 5x5 region size	
Figure 57: Average packet latency for different SSOutRegion values u	
SSInRegion = 6 using 2x2 region size	
Figure 58: Average packet latency for different SSOutRegion values u	
SSInRegion = 6 using 5x5 region size	
Figure 59: Average deflection count for different SSOutRegion values u	
SSInRegion = 6 using 2x2 region size	67

Figure 60: Average deflection count for different SSOutRegion values under in
SSInRegion = 6 using 5x5 region size67
Figure 61: Average packet latency for different SSOutRegion values under in
SSInRegion = 7 using 2x2 region size. 68
Figure 62: Average packet latency for different SSOutRegion values under in
SSInRegion = 7 using 5x5 region size68
Figure 63: Average deflection count for different SSOutRegion values under in
SSInRegion = 7 using 2x2 region size68
Figure 64: Average deflection count for different SSOutRegion values under in
SSInRegion = 7 using 5x5 region size
Figure 65: Average packet latency for different SSOutRegion values under in
SSInRegion = 8 using 2x2 region size
Figure 66: Average packet latency for different SSOutRegion values under in
SSInRegion = 8 using 5x5 region size
Figure 67: Average deflection count for different SSOutRegion values under in
SSInRegion = 8 using 2x2 region size
Figure 68: Average deflection count for different SSOutRegion values under in
SSInRegion = 8 using 5x5 region size
Figure 69: Average packet latency for different SSOutRegion values under in
SSInRegion = 9 using 2x2 region size
Figure 70: Average packet latency for different SSOutRegion values under in
SSInRegion = 9 using 5x5 region size
Figure 71: Average deflection count for different <i>SSOutRegion</i> values under in <i>SSInRegion</i> = 9 using 2x2 region size70
Figure 72: Average deflection count for different <i>SSOutRegion</i> values under in
SSInRegion = 9 using 5x5 region size70
Figure 73: Average packet latency using different <i>SSInRegion</i> values and 60% under
2x2 region size72
Figure 74: Average deflection count using different <i>SSInRegion</i> values and 60% under
2x2 region size
Figure 75: Average packet latency using different <i>SSInRegion</i> values and 60% under
5x5 region size
Figure 76: Average deflection count using different SSInRegion values and 60% under
5x5 region size
Figure 77: Average packet latency for different variable step size formulas73
Figure 78: Average deflection count for different variable step size formulas73
Figure 79: Average packet latency for different ranking policies78
Figure 80: Average deflection count for different ranking policies78
Figure 81: Average packet latency for LD enhancement over other ranking policies 78
Figure 82: Average deflection count for LD enhancement over other ranking policies 78
Figure 83: Using 4x4 mesh instead of 3x3 mesh
Figure 84: Example of two phase sequential injection82
Figure 85: Average packet latency for fifteen nodes in different mesh sizes83
Figure 86: Average deflection count for fifteen nodes in different mesh sizes83
Figure 87: Average packet latency for different number of extra nodes in different
locations in 10x10 mesh84
Figure 88: Average deflection count for different number of extra nodes in different
locations in 10x10 mesh84

Figure 89: Average packet latency for two phase SI using different number	of nodes in
different locations in 10x10 mesh	85
Figure 90: Average deflection count for two phase SI using different number	ber of nodes
in different locations in 10x10 mesh	85
Figure 91: Main increasing and decreasing diagonals in 5x5 mesh	92

Abstract

Network-on-Chip (NoC) is commonly used to connect different computing components. With the arrival of chip multiprocessor systems, NoC has started to form the backbone of communication between cores and memory within a microprocessor chip. Although NoC has started to form the backbone of communication between cores, the performance of such interconnection network is bounded by the limited power and area budgets. Bufferless NoC has emerged as a solution to reduce power and area. Bufferless NoC eliminates the buffers used for routing or flow control and handle contention using packet dropping or packet deflection.

We focus on enhancing the performance (in particular, packet latency and deflection count) of deflection-based bufferless NoC running latency-sensitive applications. We divide the work to focus on three aspects of NoC. First, we focus on selecting an output port for the outgoing packet. After that, we shift our focus to ranking the flits in order to select which one to serve first. Finally, we investigate relaxing the effect of congestion under high injection rate.

In the first part, we study the effect of Maximum Flexibility selection function (MaxFlex) on 2D bufferless meshes when a fixed or a variable step size is used. The selection function selects an output channel from a set of channels supplied by the routing function. MaxFlex is a well-known selection function that tries to maximize the number of routing choices as a packet approaches its destination. We investigate the distribution of packets through the NoC via increasing and/or varying the used step size as improving the distribution leads to better utilization and thus better performance. Simulation results show that using a larger step size can enhance the performance by up to 95% compared to using Straight Line selection function. Also, the results show that using variable step size enhances the performance compared to fixed step size by up to 29 %.

Concerning the second part, we devise and evaluate different flit ranking policies. A flit ranking policy chooses which flit should be served first, thus it determines which flit can select an output port first. In this work, we propose novel ranking policies that take the deflection behavior of the bufferless NoC into account. Via the experimental study, we compare these policies to the Oldest First (OF) ranking policy. Simulation results show that the performance of the proposed policies excels over fixed step size MaxFlex with OF as ranking policy by up to 58%.

Finally, we focus on congestion prevention for bufferless NoC running latency-sensitive applications. NoC congestion is one of the main roadblocks that prevent the bufferless NoC to operate under high injection rates. Thus, by relaxing the congestion, bufferless NoCs can approach the performance of buffered NoCs but without the extra cost of using buffers (power and area). To address this problem, we propose prevention mechanisms that target the deflection count of the flits. The proposed approaches aim to give more space for the flits to roam leading to fewer deflections which directly affects the overall packet latency. Via simulation, we show that the proposed approaches enhance the packet latency by 61% compared to fixed step size MaxFlex.

Chapter 1: Introduction

In the last few years, there is an industry wide switch to many-core and multi-core systems. In such systems, the performance of the communication system is very critical to the performance of the whole system.

Network-on-Chip (NoC) has emerged as a solution for the limitations in the traditional communications approaches (e.g. buses) especially after the tremendous increase in the number of the communicating modules within a single silicon chip [1,2]. NoC is a group of switches connecting homogeneous or heterogeneous nodes in a multiple point-to-point fashion [3,4]. NoC switches forward the data to/from the nodes/switches over links equipped with input and output buffers.

Buffered NoCs became the de facto approach for communication between cores within chip as they are more scalable, reliable, and predictable. Buffered NoCs were shown to consume significant power and chip area. For instance, in the Intel Teraflops chip and the MIT RAW chip, NoC fabric consumes around 30% and 36% power respectively [5,6]. Focusing on a single NoC switch, a considerable fraction of power and area is used by the internal buffers of the switch. In [7,8], the buffers within a single switch consume around 37% power and 80% area. In addition to being heavy power and area consumers, buffered NoCs are more complex to design as they require extra handlers for packets placement and buffer overflow.

Bufferless NoC has emerged as a solution to decrease power and area requirements [9,10,11,12]. Bufferless NoC eliminates the buffers used within switches; which has a direct impact on power and area. In contrast to the traditional buffered NoC; when two packets compete for the same output port, the allocator either drops or deflects (misroute) the losing packet instead of buffering it. Dropped packet should be retransmitted again. On the other hand, deflected packet follows a non-productive port. Due to the hazards accompanying the dropping mechanism such as handling positive (ACK)/negative (NACK) acknowledgement (NACK buffers [9], NACK network [11]), storing the packet within the source node (extra storage), and retransmission (increase the total network load), in this thesis, we adapt the deflection approach.

Even though bufferless NoCs have their advantages regarding area and power consumption, they have their own problems. Eliminating buffers helps in decreasing the chip area and limiting the consumed power, but at the same time, the flits have no place to reside in case of port contention which leads to dropping or deflecting the flits. This dropping/deflecting mechanism results in increasing the NoC traffic volume which in turn consumes link bandwidth.

Both mechanisms under low to medium rates lightly affect the performance (packet latency and deflection count) leading to a performance approaching buffered NoCs. On the other hand, under high injection rates, the number of packets increases leading to more contention, as a result, using bufferless NoCs leads to reducing the total available bandwidth (as a result of increasing the traffic volume due to retransmitting the flits or deflecting the flits away from their destination) which eventually leads to a performance worse than buffered NoCs. Thus, bufferless NoC is shown generally to function efficiently under moderate loads and smaller NoC sizes [10].

In this thesis, we study several aspects of bufferless NoC to serve latency-sensitive applications. In other words, we aim to operate latency-sensitive applications on