

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Performance Evaluation of Single Carrier Frequency Division Multiple Access Systems

A Thesis

Submitted in partial fulfillment for the requirements for the degree of Doctor of Philosophy in Communications Engineering (Electronics and Communications Engineering)

By Mohamed Mostafa Ibrahim Ibrahim

B.Sc. in Electrical Engineering, Electronics and Communications Engineering Dept. El Shorouk Academy, 2003

M.Sc. in Electrical Engineering, Electronics and Communications Engineering Dept. Helwan University, 2010

Supervised by

Prof. Ismail Mohamed Hafez

Vice Dean for Environmental Affairs and Community Service Ain Shams University Faculty of Engineering

Assoc. Prof. Fatma Abdelkarem Newagy

Electronics and Communications Engineering Dept. Ain Shams University Faculty of Engineering

Cairo 2017

Faculty of Engineering Electronics and Communications Engineering Department

"Performance Evaluation of Single Carrier Frequency Division Multiple Access Systems"

Name: Mohamed Mostafa Ibrahim Ibrahim

Degree: Doctor of Philosophy in Communications Engineering

Judgment Committee

Name and Affiliation	<u>Signature</u>
Prof. Emad K. Al-Hussaini Electronics and Communications Engineering Dept. Faculty of Engineering - Cairo University	
Prof. Wagdy Anis Electronics and Communications Engineering Dept. Faculty of Engineering - Ain Shams University	
Prof. Ismail Mohamed Hafez Electronics and Communications Engineering Dept. Faculty of Engineering - Ain Shams University	

Date: / /

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Statement

This dissertation is submitted as a partial fulfillment of the degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communications Engineering), Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Name	: Mohamed Mostafa Ibrahim Ibrahim
Signature	:
Date	: / /

Ain Shams University Faculty of Engineering Electronics and Communications Engineering Department

Curriculum Vitae

Name of the researcher:	Mohamed Mostafa Ibrahim Ibrahim
Date of Birth:	17 - 10 - 1981
Place of Birth:	Al Sharkia
Nationality:	Egyptian
Education:	B.Sc. in Electronics and Communication Engineering, EL Shorouk Academy-2003
	M.Sc. in Electronics and Communication Engineering, Helwan University-2010
Experience:	Instructor at Higher Institute of Engineering, Electronics and Communication Engineering, EL Shorouk Academy from 2003 until 2010
	Teaching Assistant at Higher Institute of Engineering, Electronics and Communication Engineering, EL Shorouk Academy from 2010 until 2017
Signature:	
	Date / /

قَالَ تَعَالَىٰ:

﴿ يَرْفَعِ ٱللَّهُ ٱلَّذِينَ ءَامَنُواْ مِنكُمْ وَٱلَّذِينَ أُوتُواْ ٱلْعِلْمَ دَرَجَاتِ وَٱللَّهُ

بِمَاتَعُمَلُونَ خَبِيرٌ ١١ الجادلة: ١١

Acknowledgements

First and foremost, I would like to thank **ALLAH**, the Almighty for the great help during my whole life.

In memorial of *Professor Adel El-Henawy*, may ALLAH have mercy with him, I would like to thank him for his continuous encouragement and support during the period he worked with me before his death.

I would like to express my honest thanks and appreciation to my supervisors: *Professor Ismail Mohamed Hafez* and *Professor Fatma Abdelkarem Newagy* for their valuable guidance, support and suggestions. Their encouragement helped me overcome the difficulties I have encountered throughout my research. It has been a pleasure working under their supervision and will be a valuable memory in my life.

I would also like to thank my family for their constant love and support. I would not be the person I am without their influence and back up. My true love goes to my *mother*. I ask ALLAH to give her the long life with happiness and health and my *father*, may ALLAH have mercy with him.

I am also especially grateful to *my wife* and my sons *Mostafa*, and *Kareem*, for their kindness, support, and encouragement, which provided the necessary enthusiasm to accomplish this thesis. This thesis is a dedication for their love.

List of Publications

- Mohamed Mostafa, Fatma Newagy, Ismail Hafez, "Joint complex regularised zero-forcing equalisation and CFO compensation for MIMO SC-FDMA systems" IET Communications, vol.10, issue.16, pp.2245–2251, Nov. 2016.
- Mohamed Mostafa, Fatma Newagy, Ismail Hafez, "performance investigation of multi-user SC-FDMA MIMO systems", accepted for publication in the IEEE 28th The International Conference on Microelectronics (IEEE ICM'16). ICM 2016 which held in Cairo, Egypt, on December 17-20, 2016.
- 3. **Mohamed Mostafa**, Fatma Newagy, Ismail Hafez, "Complex Regularized Zero Forcing Precoding for Massive MIMO Systems" in IET Communications (under review)

Abstract

The continuous need for a high-speed wireless access technology has received more attention, especially in the past decade with the development of the 4G communication technologies. Single carrier – frequency division multiple access scheme is one of the promising technologies, which have proved its robustness against various impairments in severe wireless channel conditions.

In this thesis, the research work is dedicated to analyze and investigate the performance improvement of these systems via frequency domain equalization and precoding schemes. A novel frequency domain equalizer as well as a proposed precoder is introduced. The bit error rate, as function of the signal to noise ratio, is the performance metric of interest which is utilized to evaluate the proposed schemes under different standard hypothetical and realistic channel conditions. Moreover, the quadrature phase shift keying (QPSK).

On the other hand, the energy efficiency, in bits per unit energy, is adopted as a system level performance evaluation metric. Furthermore, the analysis and performance evaluation has been extended to include the effects of the multi-user interference for all propagation environments. The carrier frequency offset is also included throughout the analysis and simulations. Since the use of massive, multiple input multiple output (MIMO) systems an unavoidable part of next generation communication networks, the performance of the considered system is studied when the number of antennas is increased such that the system tends to the massive MIMO regime.

The simulation results indicate that the performance of the a SC-FDMA system using the proposed schemes is highly competitive to the conventional zero forcing (ZF) and minimum mean squared error (MMSE) schemes assuming different CFOs, modulation schemes and channel models. Finally, some design guidelines are concluded to compromise between the BER and the EE during the system level and link level design phases.

Key Words:

- Orthogonal Frequency division multiple access
- frequency domain equalizer
- Single Carrier
- Multi carrier
- Energy Efficiency
- Precoders

Table of Contents

Acknowledgements	vi
List of Publications	vii
Abstract	ix
Table of Contents	X
List of Abbreviations	xvii
List of Figures	xxi
List of Tables	xxiv
List of Symbols	XXV
Chapter 1 Introduction	1
1.1 Thesis Objectives	1
1.2 Motivation	2
1.3 thesis Contribution	3
1.4 Dissertation outline	4
Chapter 2 Single and Multi-Carrier Communication Systems	6
2.1 Historical development of cellular Wireless Communications	6

2.2 Vehicular RF Channel
2.2.1 Fast and Slow Fading
2.2.2 Frequency Selective and Frequency Fading Flat
2.2.3 Channel Equalization
2.3 Multi-Carrier Communication Systems
2.3.1 OFDM System
2.3.2 OFDMA System
2.3.3 MC-CDMA System
2.4 Single-Carrier Communication Systems
2.4.1 SC-FDM System
2.4.2 SC-FDMA System
2.5 Conclusion
Chapter 3 SC-FDMA System 23
3.1 Introduction
3.2 Subcarriers Mapping Techniques
3.3 SC-FDMA System Model
3.4 the presentation of SC-FDMA symbols in time domain

3.4.1 Time Domain Symbols of the IFDMA System	. 32
3.4.2 Time Domain Signals for LFDMA techniques	. 33
3.5 Comparison between the OFDMA System and the SC-FDMA	
System	. 35
3.6 The Peak-to-Average Power Ratio problem	. 36
3.6.1 The Power Amplifier	. 36
3.6.2 The impact of A/D and D/A Resolution	. 40
3.6.3Windowing Filters	. 40
3.7 Impact of the CFO induced ICI on the BER	. 42
3.8 Conclusion	. 43
Chapter 4 Massive MIMO SC-FDMA Systems	44
4.1 Introduction	. 44
4.2 System model Overview	45
4.3 SC-FDMA UE-BS Transceiver Chain	. 47
4.3.1 The transmitter side	48
4.3.1.1Precoder	. 48
4.3.2 Multiple Port MIMO Channel Model	50
4.3.3 Receiver Processing	52

4.3.3.1 Single Carrier Frequency Domain Equali	ization (SC-
FDE) and Symbol Detection	55
4.4 Performance Evaluation Metrics	55
4.4.1 Complexity	56
4.4.1.1 Overall system Complexity	57
4.4.1.2 Complexity of TX/RX chains	57
4.4.2 Energy Efficiency	57
4.4.3 Bit Error Rate	58
4.5 Conclusion	58
Chapter 5 Equalization Schemes for Massive MIMO SC-FDN	AA Systems:
Link Level Analysis	59
5.1 Introduction	59
5.2 Link Level System Model	61
5.2.1Noise and ICI Analysis	62
5.3 The proposed JCRZF equalizer	65
5.3.1 Transformation of the MIMO channel into the	two equivalent
SISO Channels	66
5.3.2 Equalization and ICI Mitigation	67

5.4 Complexity analysis	70
5.5 Simulation results and analysis	71
5.5.1 Simulation Setup	
5.5.2 Results and discussion	72
5.6 Conclusion	
Chapter 6 Precoding Schemes for Massive 1 System Level Analysis	MIMO SC-FDMA Systems: 89
6.1 Introduction	
6.2 Energy efficiency (general)	91
6.3 Data Rate and SNR Analysis	94
6.4 Transceiver Power Consumption Ana	lysis
6.4.1 The average Transmitted Powe	er
6.4.2 Core power consumption	96
6.4.3 Circuit Power Consumption Mo	odel97
6.4.3.1 Transceiver Chains	98
6.4.3.2 Channel Estimation	98
6.4.3.3 Coding and Decoding	g99
6 4 3 4 Backhaul	99

6.4.3.5 Linear Processing	100
6.5 Precoding schemes for massive MIMO	100
6.5.1 Energy Efficiency Analysis for ZF Precoding	102
6.5.2 Energy Efficiency Analysis for MMSE precoding	103
6.5.3Energy Efficiency Analysis for Complex Regularized Ze Forcing Precoding	
6.6 Simulation Results and Analysis	109
6.6.1 Simulation Setup and Methodology	109
6.6.2 Results and discussion	111
6.7 Conclusion	117
	440
Chapter 7 Conclusions and Future Work	118
7.1 Conclusions	118
7.2 Future Work	120
References	122
Appendix A Channel model	132