Fixation of phalangeal and metacarpal fractures by composite wiring sutures

Thesis

Submitted in partial fulfillment of The Master Degree in Orthopedic Surgery

By
Ahmed Mohammed Mostafa lymona
(M.B., B.Ch., Cairo University)

Under Supervision of

Prof. Dr. Ahmed Kholeif, MD

Professor of Orthopedic Surgery, Faculty of medicine, Cairo University

Prof. Dr. Ashraf Moharram, MD

Professor of Orthopedic Surgery, Faculty of medicine, Cairo University

Dr. Ayman Mansour, MD

Lecturer of Orthopedic Surgery, Faculty of medicine, Cairo University.

> Faculty of Medicine, Cairo University 2016

Abstract

<u>Objective:</u> To evaluate the results of using composite wiring sutures technique in treatment of phalangeal and metacarpal fractures regarding union, functional outcome and complications.

Background: Fractures of the hand constitute 10% of all fractures. The majority of these fractures are amenable to conservative treatment with good outcomes. The management of unstable digital fractures is difficult and the results are not always satisfactory.

Methods: Twenty four patients with 27 metacarpals and phalangeal fractures were managed by open reduction and internal fixation using composite wiring sutures technique from October 2014 to December 2015.

Results: The mean radiological union time was 8.88 weeks. The mean final total active flexion was 245.92 degrees. Total active motion was excellent in 16 digits, good in 10 digits and fair in 1 digit. Secondary procedures were done in 6 patients. Complications were encountered in 7 patients. All patients returned to their pre-injurious jobs and activities.

Keywords: Composite wiring sutures, metacarpal fractures, phalangeal fractures

Acknowledgment

After thanking ALLAH, I would like to deeply thank my supervisors who aided me in this work and were the best example for demonstrating how the relationship between a professor and his student should be. Without them this work wouldn't have seen the light. They were always directing me and guiding me to the right thing. All the appreciation and gratitude go to them.

I would like to thank Prof. Dr. Ahmed Kholeif, for his support and his fatherly sincere attitude. For without his continuous scientific guiding and generous information I wouldn't have been able to complete this work.

Also I would like to thank Prof. Dr. Ashraf Moharram, for his continuous scientific guiding, his support and his fatherly sincere advices that helped me finishing this work.

I would like to thank Dr. Ayman Mansour who showed an enormous effort in teaching and guiding me right, and for the generous data and information he was giving.

I am very grateful to all staff members in department of orthopedic surgery, Faculty of Medicine, Cairo University for their help and endless support that was given to me. I deeply appreciate it. Thanks to them all.

List of content

List of figures	ii
List of tables	V
List of charts	vi
List of abbreviations	vii
Introduction	1
Anatomy	2
Aim of work	3
Biomechanics	6
Management	13
Patients and methods	31
Results	49
Case presentation	58
Discussion	73
Conclusion	79
References	80
Arabic summary	87

List of figures

Figure 1 The second metacarpal	3
Figure 2 Phalanges of the hand	4
Figure 3 Section through radius, lunate, capitate, and digit III	7
Figure 4 Tension band mechanics	9
Figure 5 Types of tension band	10
Figure 6 Composite wiring in different fracture geometries	11
Figure 7 Custom-made splints	14
Figure 8 A 3-point fixation splint and buddy tapping	14
Figure 9 Extension block splint and metacarpal block splint	14
Figure 10 Various k-wire fixation techniques	16
Figure 11 Interosseous wiring	19
Figure 12 Intramedullary nailing	21
Figure 13 Interfragmentary screws	22
Figure 14 Plating in hand fractures	24
Figure 15 Fixation of P2 fracture with mini-external fixator	27
Figure 16 Dorsal approach of metacarpal fracture	36
Figure 17 Dorsal approach to phalanx	37
Figure 18 Reduction of fracture	38
Figure 19 Tension band sutures in oblique fractures	38
Figure 20 Tension band sutures in transverse fractures	39
Figure 21 Closure of wound in metacarpal fracture	40
Figure 22 Closure of wound in phalangeal fractures	41
Figure 23 Tendon gliding and blocking exercises	43
Figure 24 Copy of follow up sheet	48
Figure 25 Pre and post operative x-rays.	49
Figure 26 Union at 34 weeks.	50

LIST OF FIG	IURES	İ۷
Figure 55 Removal and tenolysis at ten weeks	72	

75

Figure 56 Modified tension band.....

List of tables

Table 1 Belsky scoring system	20
Table 2 Distribution of fracture types	32
Table 3 Distribution of sites of fractures	32
Table 4 Distribution of pattern of fractures	33
Table 5 Mode of trauma distribution	33
Table 6 Types of anaesthesia	35
Table 7 ASSH TAF	45
Table 8 TAM evaluation system of the ASSH	45
Table 9 Quick dash scoring.	47
Table 10 Time to union	51
Table 11 TAF of involved digits	51
Table 12 TAM of involved digits	52
Table 13 Master sheet	57

List of charts

Chart 1 Time to union	51
Chart 2 TAF of involved digits	51
Chart 3 TAM of involved digits	52

List of abbreviations

AROM Active range of motion

ASSH American society for surgery of the hand

CMC Carpo-metacarpal

DIP Distal interphalangeal

Extensor digitorum comminis **EDC**

Extensor digitorum minimis **EDM**

IP Interphalangeal

MCP Metacarpo-phalangeal

P1 Proximal phalanx

P2 Middle phalanx

P3 Distal phalanx

PIP Proximal interphalangeal

ROM Range of motion

TAM Total active motion

TAF Total active flexion

Introduction

Fractures of the hand constitute 10% of all skeletal fractures. Metacarpal fractures represent 30 to 40 % of all hand fractures.

Border metacarpals (1st and 5th) are more commonly involved, the base being more commonly involved in the former and neck in the latter¹. The small finger ray accounts for 38% of all hand fractures, with a relatively even distribution across the remaining four rays². The neck is the weakest point in metacarpals, so neck fracture is the most common metacarpal fracture which known as fighter's or boxer's fracture³.

The distal exposed portion of the finger is most vulnerable to injury, with fractures at the distal phalanx level accounting for 50% of hand fractures⁴.

The majority of these fractures are amenable to conservative treatment with good outcomes. The management of unstable digital fractures is difficult and the results are not always satisfactory and there is still controversy as to the best treatment of even the simplest ones⁵.

Aim of work

The aim of this study is to evaluate the results of using composite wiring sutures technique in treatment of phalangeal and metacarpal fractures regarding union, functional outcome and complications.

Anatomy

Metacarpal bones have a concavo-convex prismoid body and two extremities. The base is cuboidal, and broader posteriorly. The head is convex, broader volarly, and longer antero-posteriorly⁶. This makes the collaterals relaxed in extension and stretched in flexion¹.

First metacarpal is the shortest with dorsally flattened broad body. Its head is less convex and broader from side to side. Second metacarpal is the longest and its base has four facets (fig 1). Third metacarpal is smaller. Its base has the styloid process dorsally. Fourth metacarpal is shorter and smaller than the third. Its base is small and quadrilateral. Fifth metacarpal has a base with one facet⁶.

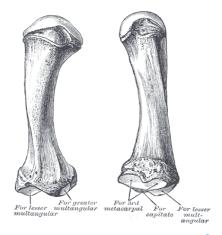


Figure 1 The second metacarpal⁶.

Phalanges have a concavo-convex tapered body and two extremities. The distal phalanx (P3) is convex dorsally and flat volarly. The base of the proximal phalanx (P1) has oval, concave articular surface. The base of middle phalanx (P2) and distal phalanx (P3) has a double concavity separated by a median ridge. The head has two

condyles separated by a shallow groove; the articular surface extends volarly (Fig 2)⁶.

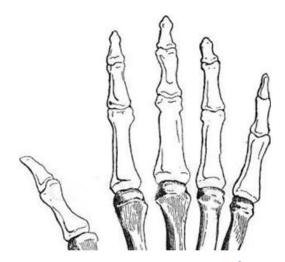


Figure 2 Phalanges of the hand⁶.

The extensor digitorum comminis (EDC) tendons are inserted into the P2 and P3. At the metacarpophalangeal (MCP) joints, tendons are bound by fasciculi to the collateral ligaments. It spreads out into a broad aponeurosis covering the dorsum of P1 and is reinforced by tendons of interossei and lumbricals. Extensor indicis and extensor digiti minimi (EDM) join the extensor expansion⁶.

At the proximal interphalangeal (PIP) joint, the aponeurosis divides into three slips; an intermediate and two laterals: the former is inserted into P2 base; and the two laterals are inserted into P3 dorsum. The lateral bands, spiraling from the PIP joint to become conjoined dorsally and distally over P2, have the risk of adhering to fracture callus, or becoming impaled with pins and screws⁶.

The first carpometacarpal (CMC) joint has wide range of motion on account of its saddle-shape. Other CMC joints are arthrodial.