SENSITIVITY OF DIFFERENT DETECTION METHODS OF Ralstonia solanacearum IN POTATO TUBERS AND INFECTED SOURCES

By

EMAN ELEIWA ALI

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo Univ., 2005

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

SENSITIVITY OF DIFFERENT DETECTION METHODS OF Ralstonia solanacearum IN POTATO TUBERS AND INFECTED SOURCES

M.Sc. Thesis
In
Agric. Sci. (Plant Pathology)

 $\mathbf{B}\mathbf{v}$

EMAN ELEIWA ALI ELEIWA

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo Univ., 2005

APPROVAL COMMITTEE

Dr. MOHAMED REDA AHMED TOHAMY
Professor of Plant Pathology, Fac. Agric., Zagazig University
Dr. NOUR ELDIN KAMEL SOLIMAN
Professor of Plant Pathology, Fac. Agric., Cairo University
Dr. MAURICE SABRY MIKHAIL
Professor of Plant Pathology, Fac. Agric., Cairo University
Professor of Plant Pathology, rac. Agric., Cairo University

Date: 4 / 5 / 2017

SUPERVISION SHEET

SENSITIVITY OF DIFFERENT DETECTION METHODS OF Ralstonia solanacearum IN POTATO TUBERS AND INFECTED SOURCES

M.Sc. Thesis
In
Agric. Sci. (Plant Pathology)

By

EMAN ELEIWA ALI ELEIWA

B.Sc. Agric. Sci. (Plant Protection), Fac. Agric., Cairo Univ., 2005

SUPERVISION COMMITTEE

Prof. Dr. MAURICE SABRY MIKHAIL

Professor of Plant Pathology, Plant Pathology Dept., Fac. Agric., Cairo Univ.

Dr. AHMED ISMAIL ABDEL-ALIM

Lecturer of Plant Pathology, Plant Pathology Dept., Fac. Agric., Cairo Univ.

Dr. FAIZA GEBRIEL FAWZI

Head Researcher, Plant Pathology Res. Inst., Agric. Res. Centre, Giza

Name of Candidate: Eman Eleiwa Ali Eleiwa Degree: M. Sc.

Title of Thesis: Sensitivity of different detection methods of *Ralstonia*

solanacearum in potato tubers and infected sources

Supervisors: Dr. Maurice Sabry Mikhail

Dr. Ahmed Ismail Abdel-Alim

Dr. Faiza Gebriel Fawzi

Department: Plant Pathology Approval: 4 / 5 /2017

ABSTRACT

The efficiency of culturing Ralstonia solanacearum on Semi Selective Modified South Africa medium (SMSA), inoculation in SMSA broth (SMSB) enrichment, immunofluorescent antibody staining (IFAS) using polyclonal antibodies, tomato bioassay and conventional polymerase chain reaction (PCR) methods were evaluated for their sensitivity in routine detection of the brown rot bacterium, Ralstonia solanacearum, in potato piece. The experiments were performed using potato extracts of two cultivars; Spunta and Cara, also using two types of soil; sandy and clay. Potato extracts were prepared from 200 tubers according to the EPPO procedure. The sensitivity of the different detection methods was compared by adding bacterial suspensions ranging from 10⁸ to 10² CFU per ml to potato extracts prepared from two cultivars. Also, inoculated two types of soil with bacterial suspensions ranging from 10^8 to 10^2 CFU per ml were used. The results showed that 3.6×10^2 and 3.6×10³ CFU per ml were the lowest bacterial number detected by isolation on SMSA medium using artificially inoculated potato extracts of cv. Cara and Spunta, respectively. In soil the limit of the detection was 3.5×10^2 CFU per g soil in both types of the soil. In comparison, a tomato bioassay has shown to detect bacterial populations number between 3.6×10^4 and 3.6×10^5 CFU per ml in potato extracts of cv. Cara and Spunta respectively, and the same limit of bacterial detection 3.5×10^4 and 3.5×10^5 CFU per g soil was observed in sandy and clay soil samples, respectively. The detection threshold using IFAS test was 3.6×10⁴CFU per ml in potato extracts of two cultivars whereas the sensitivity detection threshold decreased to 3.5×10⁶ CFU per g of both soils. Using conventional PCR method, the detection limit of the pathogen in inoculated potato extracts were 3.6×10⁴CFU per ml in both cultivars before enrichment, while overnight enrichment in SMSB broth the limit of sensitivity detection did not changed in cv. Spunta while deceased this limit to 3.6×10³CFU per ml in cv. Cara. In soil, the limit of the detection was decreased to 3.5×10⁵ and 3.5×10⁶ CFU per g soil of sandy and clay soils respectively before enrichment, and after enrichment did not enhanced the detection ability. Generally, IFSA test was the best detection methods in screening of potato seeds although that, its sensitivity is lower than culturing on SMSA medium. But, it is faster, robust, cheap, screening large numbers of samples and reasonably specific method. In soil, use of modified semi-selective medium is the best in detecting R. solanacearum compared to those of other methods.

Key words: Ralstonia solanacearum, soil, potato, detection, selective medium, PCR, IFAS.

Dedication

First I would like to express my deepest thanks to

Allah for continuous giving and help me to finish

this work. Second I dedicate this work to whom my

heart felt thanks; to my husband and my daughters

Maryam and Sara for their patience and help, as well

as to my parents and sisters for all the support they

lovely offered along the period of my post

graduation.

ACKNOWLEDGEMENT

First of all, I owe my deepest thanks and gratitude to GOD, who without his aid this work could not be done.

I wish to express my sincere thanks and appreciation to $\mathcal{D}r$.

Maurice Sabry Mikhail Professor of Plant Pathology Faculty of Agric., Cairo University for suggesting this point of research, his unique supervision, constant encouragement, valuable criticisms and his guidance throughout this work.

Thanks also to **Dr. Ahmed Ismail Abdel-Alim**, lecturer of Plant Pathology in the same department for his supervising and encouragement throughout the preparation of this thesis.

Special thanks to **Dr. Faiza Gebriel Fawzi**, Head Researcher, Plant Pathology, Plant Pathology Res. Inst., Agric. Res. Centre, Giza for providing every possible facility, her unique guidance, encouragement and sincere suggestions throughout the entire work.

Thanks also to research staff of the Potato Brown Rot Project (PBRP) especially **Dr. Ahmed Hussein** and **Dr. Shahenda Farag** for their cooperation and facilities provided.

I would like to express my deepest gratitude and thanks to my family, friends and colleagues for their support throughout this investigation.

CONTENTS

INTRODUCTION	Page 1 4
1. Characteristics of Ralstonia solanacearum	5 5
a. Taxonomy and diversity b. Morphological and cultural characteristics c. Races and biovars	5 7 8
2. Importance of Bacterial Wilt	9 14
a. Isolation of Ralstonia solanacearum b. Detection by Serological technique (IFAS) c. Detection by conventional PCR d. Detection by tomato biological assay MATERIALS AND METHODS 1. MATERIALS	18 25 30 37 41
a. Soil samples	41
b. Water samples	41
c. Weed samples	41
d. Potato tubers samples	41
e. Tomato seedlings	41
2. METHODS	42
A. Isolation and characterization of <i>Ralstonia solanacearum</i> from different habitat	42
	42
2. Irrigation water	42
3. Potato tubers	43
4. Weeds associated with potato fields	43
B. Identification of the pathogen	44

1. Physiological and biochemical characteristics	44
2. Pathological, serological and molecular methods a. Plating on the SMSA medium	44 44
b. Immunofluorescence Antibody Stain (IFAS)	45
c. Polymerase Chain Reaction (PCR)	46
1. Extraction of DNA	46
2. DNA amplification	46
3. Analysis of the PCR product	47
d. Tomato seedling bioassay	47
e. Quantitative, Multiplex, Real-time, Fluorogenic PC	
(Taq-Man) Assay	48
1. Extraction of DNA	49
2. DNA amplification	49
3. Post-PCR analysis	50
3. Pure Culture	50
a. Determination of different detection metho	
sensitivity	50
4. Potato tuber extracts	51
a. Routine preparation for potato extracts	51
b. Potato extracts and inoculum preparation	52
5. Soil extracts	52
a. Bacterial culture and inoculum preparation	52
b. Soil inoculation and bacterial extraction	53
Detection techniques	53

Recovery on modified semi selective medium (SMSA)
Immunofluorescence Antibody Stain (IFAS)
Enrichment techniques
a. DNA extraction
b. DNA amplification
c. Analysis of the PCR product
Tomato seedling bioassay
a, buffers, regents and protocols
a. King's medium B. (KB medium) (King et al., 1954)
b. Nutrient agar (Jacobs and Gerstein, 1960)
c. Oxidation/Fermentation (OF) medium (Fahy and Persley, 1983)
d. Gelatin medium (Collins and Patricia, 1984)
e. Starch agar (Collins and Patricia, 1984)
f. Agrinine medium (Thornley's medium 2A) (Lelliot and Stead, 1987)

a. Buffers used for Immunofluorescence Antibody Stain	61
(IFAS) test (Lelliot and Stead, 1987)	
1. Phosphate buffer (0.05 M)	61
2. Phosphate buffer (0.01 M)	61
3. Phosphate buffer saline (0.01 M)	61
4. Phosphate buffer tween	62
5. Phosphate buffer glycerol (0.1 M)	62
3. PCR protocol	62
A. PCR protocol (Pastrik et al, 2002)	62
1. Oligonucleotide primers	62
2. PCR reaction mix	62
3. 10X Tris Acetate EDTA (TAE) buffer for PCR	63
4. Preparation of the loading buffers	63
a. Bromophenol blue (10% stock solution)	63
b. Loading buffers	63
5. PCR reaction conditions	63
B. Quantitative, Multiplex, Real-Time, Fluoro-genic PCR (Taq-Man) Assay	64
(and manit rapped	

1. Primers for R. solanacearum (biovar 2/race 3) assay	6
2. Probe for R. solanacearum (biovar 2/race 3) assay	6
3. Reaction Mixture (TAQ Reaction mix)	6
4. Thermal cycling programs	Ć
RESULTS	(
 Isolation and pathogenicity of the bacteria Identification of the bacterial pathogen 	6
a. Physical and biochemical characteristic	(
b. Detection method	(
 Plating on SMSA medium Immunofluorescent antibody staining 	(
3. Polymerase Chain Reaction (PCR)	,
4. Quantitative, Real-time, Fluorogenic PCR (<i>Taq</i> -	
Man) assay	
3. Determination of different detection methods sensitivity using	
pure culture	
a. SMSA medium	
b. IFAS test	
c. Conventional PCR	
d. Tomato bioassay	
4. Detection of Ralstonia solanacearum in inoculated tuber	
extracts	
a. SMSA medium	

b.	IFSA test	79
c.	Conventional PCR	79
	Tomato seedling bioassay test	80
	cts of infested sandy and clay soils	81
a.	SMSA medium	81
b.	IFAS test	82
c.	Conventional PCR	83
d.	Tomato seedlings bioassay test	84
DISCUSS	SION	87
SUMMAR	Y	96
REFERE	NCES	102
ARARICS	TIMMARV	

LIST OF TABLES

No.	Title	Page
1	Physiological and biochemical characteristics of <i>R. solanacearum</i> isolates collected from different sources	70
2	Detection of <i>Ralstonia solanacearum</i> in pure culture using dilution planting.	74
3	Total mean counts (\log_{10}) of R . solanacearum cells in pure culture containing 10-Fold dilutions of the pathogen by the indirect immunofluorescent antibody staining method	75
4	Sensitivity detection of <i>R. solanacearum</i> in pure culture by conventional PCR (pastrik <i>et al.</i> , 2002)	76
5	Sensitivity detection of <i>R. solanacearum</i> in pure culture by tomato bioassay	76
6	Comparison of methods for detection <i>Ralstonia</i> solanacearum in pure culture	77
7	Detection of <i>R. solanacearum</i> in spiked potato extracts using plating on SMSA, with and without enrichment technique.	78
8	Total mean counts (log ₁₀) of <i>R. solanacearum</i> cells in potato tuber extracts containing 10- fold dilutions of the pathogen detected by indirect immunofluorescent antibody staining method.	79
9	Detection of <i>R. solanacearum</i> in both spiked potato extract cultivars (Sponta& Cara) using conventional PCR, without and with enrichment technique	80

10	Detection of <i>R. solanacearum</i> in both spiked potato extract cultivars (Spunta & Cara) containing 10- fold dilutions of the pathogen by tomato bioassay	81
11	Detection of <i>R. solanacearum</i> in infested sandy and clay soils using plating on SMSA, with and without enrichment technique.	82
12	Total mean counts (log_{10}) of R . solanacearum cells in an artificially infested sandy and clay soil using IFAS test	83
13	Detection of <i>R. solanacearum</i> in sandy and clay soils using conventional PCR without and with enrichment technique.	84
14	Detection of <i>R. solanacearum</i> populations in sandy and clay soils using tomato seedlings bioassay test	85
15	Comparison between different detection methods	86

LIST OF FIGURES

No.	Title	Page
1	Vascular discoloration and slight oozing from infected bundles, the most common typical symptoms of brown rot	67
2	Internal symptoms showing bacterial ooze	67
3	Colony morphology on SMSA, a semi -selective medium of <i>R. solanacearum</i>	67
4	Colony morphology on King's B medium. Diffusible brown pigment in agar may be noticed.	67
5	Tomato seedling test, severe wilt after 5 days	68
6	Cell morphology of <i>R</i> . <i>solanacearum</i> in the serological immunofluorescent antibody staining (IFAS) test	69
7	R. solanacearum bands in agrose gel electrophoresis showing no variation between isolates from different sources	72
8	Taq-Man assay of six virulent isolates of R. solanacarum recovered from infected potato plants, soil, water and weeds isolated in Egypt	73
9	Detection of <i>R. solanacearum</i> by (Pastrik <i>et al.</i> , 2002) from enriched and non-enriched sandy and clay soil suspensions	85