Recent Updates for Management of the Difficult Airway

Essay

Submitted for Partial Fulfillment of Master Degree.

in Anaesthesia

By

Joseph Farouk Atta Hakiem

M.B. B.Ch. Kasr Al Ainy -Cairo University

Under Supervision of

Prof. Galal Adel El kady

Professor of an aesthesia, I.C.U and Pain management Faculty of Medicine-Ain Shams University

Dr.Ehab Hamed Abdel salam

Assistant prof. of an aesthesia ,I.C.U and Pain management Faculty of Medicine-Ain Shams University

Dr.Amr Sobhy Abdel Kawy

Lecturer of anaesthesia, I.C.U and Pain management Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2016

Contents

List of Abbreviations List of Tables List of Figures	ii
Introduction and aim of the work	1
Chapter 1: Anatomy of the airway	4
Chapter 2: Airway assessment	17
Chapter 3: An Overview on different airway devices and tools	36
Chapter 4: Strategies for management of the difficul airway	
Chapter 5: Complications of endotracheal intubation and other airway management procedures	99
Summary	123
References	125
Arabic Summary	

Acknowledgment

Many thanks to GOD, who granted me the ability to perform this essay.

I would like to thank **Prof. GalalAdel El kady**, Professor ofanaesthesia ,I.C.U and Pain management Faculty of Medicine-Ain Shams University as the senior supervisor for his help and great support during this work. I am indebted to him for fathering this research.

It is also a pleasure to express my deep gratitude to **Dr.Ehab Hamed Abdel Salam** Assistant prof. of an aesthesia ,I.C.U and Pain management Faculty of Medicine-Ain Shams University To him goes the credit of bringing this work to light. His continuous encouragement and generous help have promoted me to carry this work. I feel greatly indebted and grateful to him.

I would like also to thank **Dr.Amr Sobhy Abdel Kawy**lecturer of anaesthesia, I.C.U and Pain management Faculty of Medicine-Ain Shams University, for his guidance and encouragement throughout this work. I was fortunate to carry out this essay under his guidance

List of Abbreviations

A-O gap : Atlanto-occipital gapA-O joint : Atlanto-occipital joint

CC : Cricoid cartilage

CICO : Cannot intubate, cannot oxygenate

CT : Computed tomography

DA : Difficult airway

DAS : Difficult Airway Society

ETC : EsophagotrachealCombitube

ETI : Endotracheal intubation

ETT : Endotracheal tube

EzT : Easy Tube

GVL : GlideScope video-laryngoscope

ICU : Intensive care unit

IHD : Ischemic heart disease

IPPV : Intermittent positive-pressure ventilation

LMA : Laryngeal Mask airway

LT : Laryngeal Tube LTS : Laryngeal Tube S

MRI : Magnetic resonance imaging

NODESAT: Nasal Oxygenation During Efforts Of

Securing A Tube

PEEP : Positive end-expiratory pressure

PES : Pre-epiglottic space

PPV : Positive pressure ventilation SAD : Supraglottic airway device

SLIPA : Streamlined Liner of Pharyngeal Airway

SM : Strap muscles

TC : Thyroid cartilage

TMJ : Tempromandibular joint

List of Abbreviations(Cont.)

TR : Tracheostomy

TT : Tracheostomy tube

US : Ultrasonography

VL : Video-laryngoscope

List of Figures

Fig. No.	Item	Page
Fig. 1-1	The Airway	4
Fig. 1-2	The nasal cavity	5
Fig. 1-3	Sensory nerve supply of the nose	7
Fig. 1-4	Hard and soft palates	7
Fig. 1-5	Nerve supply of the tongue	10
Fig. 1-6	The Pharynx	11
Fig. 1-7	Innervation of the Pharynx	12
Fig. 1-8	Laryngeal inlet	13
Fig. 1-9	Nerve supply of the larynx	14
Fig. 1-10	Sensory nerve supply to the airway	15
Fig. 1-11	differences between pediatric and adult airway	16
Fig. 2-1	Mallampati classification	20
Fig. 2-2	Front of neck ultrasound	29
Fig. 2-3	Front of neck ultrasound	30
Fig. 3-1	oropharyngeal airway	36
Fig. 3-2	nasopharyngeal airway	37
Fig. 3-3	LMA Unique	38
Fig. 3-4	LMA ProSeal	38
Fig. 3-5	LMA Flexible	39
Fig. 3-6	LMA Supreme	39
Fig. 3-7	LMAFastrach	39
	LMA CTrach	40
Fig. 3-9	I-Gel Airway	42
	Cobra Perilaryngeal Airway	43
Fig. 3-11	Combitube	45
Fig. 3-12	Easy Tube	47
Fig. 3-13	Double-Lumen Endobronchial tube	48
Fig. 3-14	Truview pediatric set	50

List of Figures (Cont.)

Fig. No.	Item	Page
Fig. 3-15	Heine Flexible tip laryngoscope	51
Fig. 3-16	Flipper fiberoptic laryngoscope	51
Fig. 3-17	WuScopefiberopticlaryngoscope	52
Fig. 3-18	The GlideScope	54
Fig. 3-19	The CoPilot	55
Fig. 3-20	Examples of different types of video- laryngoscopes	56
Fig. 3-21	Taxonomy of video-laryngoscopes	57
	Nu-Trake kit	58
	QuickTrach	59
	Minitrach II	59
	Melker cricothyrotomy kit for wire-guided	60
	or surgical technique	
Fig. 3-26	laryngeal handshake	61
Fig. 3-27	Cricothyroidotomy technique	64
Fig. 3-28	Stepsinthecannulacricothyroidotomy	68
Fig. 3-29	The percutaneous trachesotomy set	69
Fig. 3-30	Airway mamagement	70
Fig. 3-31	Seldinger technique	71
Fig. 3-32	Dilation	72
Fig. 3-33	Tube placement	72
Fig. 3-34	Open surgical tracheotomy	74
Fig. 4-1	Sniffingposition	76
Fig. 4-2	management of unanticipated difficult intubation in adults	79
Fig. 4-3	External laryngeal manipulation	84
Fig. 4-4	Plan D: Emergency front-of-neck access	92
Fig. 4-5	Normal capnogram	94
Fig. 4-6	Anticipated difficult tracheal intubation algorithm	95

List of Figures (Cont.)

Fig. No.	Item	Page
Fig. 4-7	DAS master algorithm for failed intubation	96
	in obstetric general anaesthesia	
Fig. 4-8	algorithm for unexpected difficult tracheal	98
	intubation in pediatrics	
Fig. 5-1	Oesophageal intubation	102
Fig. 5-2	Oesophageal perforation	111
Fig. 5-3	CT tracheoscopy shows a tracheal tear in	112
	the tracheal wall	
Fig. 5-4	Endoscopic view of posterior pharyngeal	113
	wall laceration	
Fig. 5-5	Right Vocal cord paralysis	115
Fig. 5-6	Bilateral vocal process granulomas	116
Fig. 5-7	Postintubation tracheal stenosis	117
Fig. 5-8	Tracheo-oesophageal fistula	120

List of Tables

Table No	Item	Page
Table 1.1	Muscles of the Tongue	9
Table 2.1	Airway-compromising conditions	17
Table 2-2	Ultrasound measurements of anterior neck soft tissue thickness	31
Table 3-1	Laryngeal Mask Airway Size Based on Patient Weight	41
Table 3-2	Cobra PLA sizes according to body weight	44
Table 3-3	SLIPA size selection guidelines	45
Table 4-1	Comparison between induction agents	80
Table 4-2	Comparison between rocuronium and suxamethonium	81
Table 4-3	Methodsofendotrachealtube placementverification	93
Table 4-4	Table of factors to consider after an airway emergency during caesarean section	97
Table 5-1	Complicaion of ETI	101
Table 5-2	Common problems leading to leak during mechanical ventilation	108
Table 5-3	Complications of tracheostomy	118
Table 5-4	Complications of percutaneous tracheostomy	122

Abstract

Management of the difficult airway remains one of the most relevant and challenging tasks for anesthesia care providers. This essay focuses on airway management devices and techniques and their clinical application, with particular emphasis on the difficult or failed airway. It includes descriptions of many new airway devices also it includes airway assessment techniques, algorithms of difficult intubation in different situations and finally complications of difficult intubation and other airway management procedures.

Key words

Difficult airway, difficult intubation, airway assessment, strategies and algorithms of difficult intubation, complications

Introduction

Management of the difficult airway remains one of the most relevant and challenging tasks for anesthesia care providers. This essay focuses on airway management devices and techniques and their clinical application, with particular emphasis on the difficult or failed airway. It includes descriptions of many new airway devices. (Apfelbaum et al., 2013).

Adverse outcomes related to airway management may have deleterious consequences such as brain damage, cardiac arrest and death due to hypoxia. Thus if the anaesthetist loses control over the airway he may severely harm or even lose his patient. (Cheney et al., 2006).

A difficultairway is defined as the clinical situation in which a conventionally trained anesthesiologist experiences difficulty with facemask ventilation of the upper airway, difficulty with tracheal intubation, or both. (Apfelbaum *et al.*, 2013).

Development of algorithms for the management of the difficult airway should be primarily based on clinical needs. The following scenarios should be covered: Expected difficult airway, unexpected difficult airway, and

difficult ventilation by mask and/or supraglottic devices and difficult intubation. (Schaeuble & Heidegger 2012).

The purpose of these Guidelines is to facilitate the management of the difficult airway and to reduce the likelihood of adverse outcomes. The principal adverse outcomes associated with the difficult airway include:brain injury, cardiopulmonary arrest, airway trauma, and damage to the teeth. (Apfelbaum et al., 2013).

Aim of the Work

- ✓ Discussing new devices and techniques for difficult airway management.
- ✓ Discussing recent airway management guidelines and algorithms.

=

Anatomy of the Airway

The airway extends from the external nares to the junction of the larynx with the trachea. It includes the nose, oral cavity,tongue, the pharynx and the larynx. Functions of the airway include phonation, olfaction, digestion, humidification and warming of inspired air. (*Brown*, 2000).

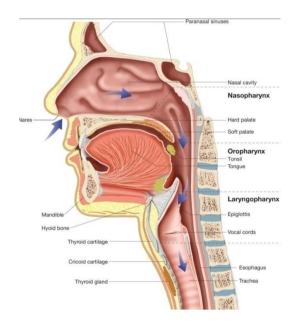


Fig. 1.1 The Airway (*Brown 2000*)

Thenose:

The external nose is a pyramidal structure, situated in the midface, with its base on the facial skeleton and its apex projecting anterior. The paired nasal bones form the external nose superiorly and two sets of paired cartilage inferiorly. The upper lateral cartilages provide the shape of the middle third of the nose and support for the underlying nasal valve. The paired lower lateral (alar) cartilages are butterfly-shaped and consist of medial and lateral crura. The medial crus forms the columella, and the lateral crus (Dion et al., 1978).

defines the shape of the nasal alae. Together, these crura maintain the patency of the underlying nasal vestibule. Internally, the cartilage is supported by the nasal septum.

Vestibule:

The nasal vestibule is the most anterior part of the nasal cavity. It is enclosed by the cartilages of nose and lined by the same epithelium of the skin (stratified squamous, keratinized). The other part of the nasal cavity, which is lined by the respiratory epithelium, is called nasal cavity proper. Inside the vestibule are small hairs called vibrissae, which filter dust and other matter that are breathed in. Within the vestibule, the epithelium loses its keratinised nature and undergoes a transition into typical respiratory epithelium before entering the nasal fossa. (Cauna1982).

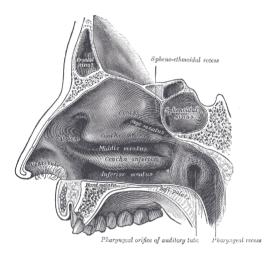


Fig. 1.2 The nasal cavity (Gray, 1918)

Blood supply to the nose:

Blood supply to the nose is by both internal and external carotid arteries. The anterior and posterior ethmoidal arteries are branches of the ophthalmic artery,