

Development of Nanocrystalline Cellulose Incorporated with Biopolymers for Industrial Applications

A Thesis Submitted by

Mona Tawfik Kamer Alshemy

(M.Sc. Inorganic Chemistry 2010)

For the Requirement of the Degree of **Doctor of Philosophy (Ph.D)**

to

Chemistry Department

Faculty of Science

Ain Shams University

2017

Development of Nanocrystalline Cellulose Incorporated with Biopolymers for Industrial Applications

Submitted by Mona Tawfik Kamer Alshemy

This thesis has been approved for submission by supervisors:

Thesis supervisors	APPROVED
Prof. Dr. Abd El-Gawad M. Rabia	
Professor of Organic Chemistry-Faculty of Science - Ain Shams University Prof. Dr. Atef Abd Alaziz Ibrahim	
Professor of Cellulose and Paper - National Research Centre	
Prof. Dr. Abeer Mohamed Adel	•••••
Professor of Cellulose and Paper - National Research Centre	
Prof. Dr. Amira Mohamed El-Shafei	
Professor of Pretreatment & Finishing of Cellulose Based Fiber - National Research Centre	

Head of Chemistry Department
Prof. Dr. Ibrahim Husseini Ali Badr

Approval Sheet

Ph.D. Thesis

Development of Nanocrystalline Cellulose Incorporated with Biopolymers for Industrial Applications

Name of the candidate: *Mona Tawfik Kamer Alshemy*This thesis has been approved for submission by:

<u>Thesis supervisors</u>	SIGNATURE
Prof. Dr. Abd El-Gawad M. Rabia	
Professor of Organic Chemistry - Ain Shams University	
Prof. Dr. Atef Abd Alaziz Ibrahim	
Professor of Cellulose and Paper - National Research Centre	
Prof. Dr. Abeer Mohamed Adel	
Professor of Cellulose and Paper - National Research Centre	
Prof. Dr. Amira Mohamed El-Shafei	
Professor of Pretreatment & Finishing of Cellulose Based	
Fiber - National Research Centre	
	APPROVED
Government Committee	
Prof. Dr. Abd El-Gawad Mohamed Rabia	
Professor of Organic Chemistry - Ain Shams University	
Prof. Dr. Atef Abd Alaziz Ibrahim	
Professor of Cellulose and Paper - National Research Centre	
Prof. Dr. Abdel Rahman Mohamed Naser	
Professor of organic chemistry - Al-Azhar university	
Prof. Dr. Mohamed Mansour Abdel-Aziz	
Professor of radiation research and technology center - Atomic Energy Authority	

Head of Chemistry Department
Prof. Dr. Ibrahim Husseini Ali Badr

DEDICATION

First Of All, I Dedicate This Work to my Beloved Mother, my Husband Dr. Aly, & my Lovely Son Mohamed

ALSO

To My Whole Family & Dear Friends

Deep Gratefulness

for

Their Patience, kind support, L continuous encouragement during the whole time of my Ph.D. thesis

Mona Al-Shemy

Acknowledgments

First and foremost, all praises and sincere thanks be to ALLAH.

I wish to express my sincere appreciation to *Prof. Dr.*Abd El-Gawad Mohamed Rabia, Professor of Organic Chemistry,

Faculty of Science, Ain Shams University, for his valuable guidance, helpful suggestions, continuous encouragement, supervision and support during this work.

I would like to express my sincere thanks, full respect and deep gratitude to *Prof. Or. Atef Abd Alaziz Ibrahim*, *Professor of Cellulose and Paper Department, National Research Centre*, for his patient supervision, inspiring guidance, critical comments, suggestions, and the never-ending support he displayed throughout this study.

I sincerely express my deepest gratitude to *Prof. Dr. Amira Mohamed El-Shafei*, *Professor of Textile Research Division*, *National Research Centre*, for her support, enthusiasm, valuable discussion, criticism and keen interest in the present work.

Thanks, appreciation and gratitude are due to *Prof. Dr. Abeer Mohamed Adel, Professor of Cellulose and Paper Department, National Research Centre*, for her kind academic supervision,

valuable advice, unlimited support, encouragement and suggestions contributing to the success of this thesis

I sincerely express my deepest gratitude to *Prof. Dr. Mohamed El-Skhawy, Professor of Cellulose and Paper Department, National Research Centre,* for providing necessary knowledge and laboratory facilities during this work.

I wish to express my warm and sincere thanks and appreciation to my colleague *Dr. Fatma Nady Taha*, for supporting and helping me solving problems during my work. Really I don't find any word to express my thanks and my gratitude to her.

I would like to thank Cellulose and Paper Department, National Research Centre, and Faculty of Science, Ain Shams University, for all the facilities provided.

Finally, I would like to thank my mother & my husband Or. Aly El Sayed for their love, support and devotion throughout my Ph.D. fulfillment.

Mona Tawfik Kamer Al-Shemy

Abstract

ackaging has increasingly become a dominant factor in the global market competitiveness: this implies also obtaining new raw materials with improved packaging properties. Material from locally cultivated date palm was used as a packaging additive, showing potential in improving strength and barrier properties. In particular, date palm sheath (DPS) cellulose nano-crystals (CNCs) were prepared by ammonium persulfate (APS) treatment of unbleached, bleached and mercerized fibers. The influence of the reaction parameters on the CNCs were studied. Besides APS extraction, CNCs were also isoltaed from DPS fibers using mineral acids (sulfuric & phosphoric). The effect of cellulose polymorphs on CNC isolation were studied too. The characteristics of DPS-CNCs prepared by APS treatment were compared with those of CNCs obtained by the two acid hydrolysis treatments. The CNCs degree of substitution and surface charge density were determined by conductometric titration and zeta potential measurements, respectively. A significant particle size reduction, surface charge density diminishing, and thermal stability enhancement ensued as a consequence of cellulose mercerization. The elucidation of the structure of the prepared compounds were done via several techniques. The packaging processing with the extracted CNCs includes bio-composite and antimicrobial food package formation and jute package modulation. All the prepared bio-composites at optimum conditions showed enhanced mechanical, barrier, thermal and antimicrobial properties.

Key words

Cellulose nano-crystal (CNC); Degree of oxidation; Degree of substitution; Cellulose polymorphs; Bio-composite; Food package; Mechanical properties; Water vapor permeability; Water sorption isotherm; BET model; β -Cyclodextrin; Clove oil; Jute; Thermal stability.

	Page
List of Tables	I
List of Figures	III
Abbreviations	IX
Summary	i
Chapter 1: Literature Review	
1.1. Introduction	1
1.2. Cellulose Biopolymer	2
1.2.1. Cellulose I Polymorph	3
1.2.2. Cellulose II Polymorph	5
1.3. Chitosan Biopolymer	5
1.4. Cyclodextrin Biopolymer	8
1.4.1. Structure of CDs	8
1.4.1.1. Properties of CDs	11
1.4.1.2. Applications of CDs	12
1.5. Classification of Nanocellulose Structures	13
1.5.1. Micro-Fibrillated Cellulose (MFC)	14
1.5.2. Cellulose Nano-Crystals (CNCs)	17
1.5.1.1. Modifications of CNCs surface	19
1.5.3. Bacterial Cellulose (BC)	23
1.6. Applications of CNCs	24
1.6.1. Improvement of Polymeric Bio-Composite	24
Properties	
1.6.1.1. Binary bio-composite system	25
1.6.1.2. Ternary bio-composite system	26
1.6.2. Biomedical Applications	28
1.6.3. Nanostructures by Templating with CNC	28
1.6.4. Finishing of Textile Fabrics	30

Chapte	r 2: Experimental	
2.1. Mat	erials and Methods	34
2.1.1.	Materials	34
2.1.2.	Extraction of Cellulose from Raw DPS	34
2.1.3.	Preparation of Cellulose Nano-Crystals (CNCs)	35
2.1.4.	Synthesis of β-CD _{Cit} Derivative	38
2.1.5.	Bio-Composite Films Formation	39
2.1.5	1. CS bio-composite with different CNCs	39
2.1.5	2. CS bio-composite with CD _{Cit} and CNC	39
2.1.6.	Jute Fabric Treatment	40
2.2. Cha	racterization	40
2.2.1.0	Chemical Composition of the Raw, Pulp,	40
В	leached and Mercerized DPS	
2.2.1	1. Moisture Percent (Dry Content)	40
2.2.1	2. Resin and Wax Determination	41
2.2.1	3. Lignin Estimation	41
2.2.1	4. Holocellulose from annual plants estimation	42
2.2.1	5. Alpha Cellulose Estimation	42
2.2.1	6. Pentosane Estimation	43
2.2.1	7. Ash Estimation	44
2.2.2.0	Characterization of Cellulose Nano-Crystals	44
(CNCs)	
2.2.2.	1. Degree of substitution (degree of oxidation)	44
2.2.2.	2. Total carboxyl content of β-CD _{Cit}	45
2.2.2	3. Determination of phosphorus content	46
2.2.3.	Analytical and Instrumental Characterization of	46
	Samples	
	1. Zeta-potential and average size analysis	46
	2. FT-IR spectroscopy analysis	47
	3. UV-vis spectroscopy analysis	48
2.2.3.	4. X-ray diffraction (XRD) analysis	48
	5. Thermo-gravimetric analysis (TGA)	49
2.2.3.	6. Environmental scanning electron	50
	microscopy (ESEM) analysis	

2.2.3.7. Transmission electron microscopy (TEM)	50
analysis	
2.2.3.8. Mechanical test	51
2.2.3.9. Water vapor permeability measurement	51
2.2.3.10. Water sorption isotherm measurement	52
2.2.3.11. Clove oil introduction and quantification	53
2.2.3.12. Determination of weight uptake %	54
2.2.3.13. Statistical analysis	54
2.2.3.14. Anti-microbial test	55
Chapter 3: Results and Discussion	
Part I	
3.1.1. Chemical Analysis of the Fibers	57
3.1.2. Optimization of Preparation Conditions by	58
APS	
3.1.2.1. Effect of APS concentration on the CNC-As	58
yield %	
3.1.2.2. Effect of reaction time on the CNC-As yield	59
%	
3.1.2.3. Effect of reaction temperature on the CNC-	60
As yield %	
3.1.3. Morphological Analysis	61
3.1.3.1. ESEM analysis of raw, pulp, bleached and	61
mercerized DPS	
3.1.3.2. TEM analysis of the prepared CNCs	62
3.1.4. Particle Size and Zeta Potential Analysis	63
3.1.5. FT-IR Analysis	65
3.1.5.1. FT-IR analysis of raw, pulp, cellulose I and	65
cellulose II DPS fibers	
3.1.5.2. FT-IR analysis of CNCs at different reaction	67
parameters	
3.1.5.3. FT-IR analysis of different prepared CNCs	69
3.1.6. X-ray diffraction of prepared cellulosic	70
materials and CNC polymorphs	
3.1.7. Thermal Analysis	73

3.1.7.1. Thermal behavior of raw DPS, pulp, CI, CII	73
and CNCs fibers	
3.1.7.2. Thermal behavior of different functionalized	74
CNCs polymorphism	
3.1.7.3. Calculation of activation thermodynamic	76
parameters	
Part II	
3.2.1. Optimization of CS/CNC-A Bio-composite	100
Concentration	
3.2.1.2. Mechanical Properties of CS bio-composite	100
loaded with CNC-AI and CNC-AII	
3.2.1.3. WVP	104
3.2.1.4. Water sorption isotherm	105
3.2.1.5. FT-IR spectral analysis of CS bio-	106
composites with oxidized CNC-AI and	
CNC-AII	
3.2.2. CS bio-composite with Oxidized, Sulfated and	108
Phosphorylated CNCs	
3.2.2.1. Mechanical analysis	108
3.2.2.2. WVP	109
3.2.2.3. FT-IR of CS bio-composite with sulfated	110
and phosphorylated CNCI and CNCII	
3.2.2.4. Surface morphology of bio-composites	111
3.2.2.5. X-ray diffraction analysis	112
3.2.2.6. Thermal Properties of CS/CNC bio-	113
composites	
Part III	
3.3.1. Modification of β-CD Solubility	136
3.3.2. Characterization of CS/β-CD _{Cit} Bio-composite	137
with Oxidized CNC	
3.3.2.1. Mechanical Properties of CS bio-composite	137
loaded with β-CD _{Cit} and CNC	
3.3.2.2. WVP	139
3.3.2.3. Transparency test	140
3.3.2.4. FT-IR analysis	140

3.3.2.5. CS/β-CD _{Cit} bio-composites inclusion	142
complexes with clove oil	
3.3.2.6. Release and sustain content studies	144
3.3.2.7. Surface morphology analysis	145
3.3.2.8. XRD analysis	145
3.3.2.9. Antimicrobial activity	146
Part IV	
3.4.1. Characterization of Prepared P-NC	165
3.4.2. Characterization of Treated Jute Fabric	165
3.4.2.1. Weight uptake and phosphorous content	165
3.4.2.2. Mechanical properties	165
3.4.2.3. ATR-FTIR analysis	166
3.4.2.4. Surface morphology analysis	169
3.4.2.5. EDX analysis	170
3.4.2.6. XRD analysis	170
3.4.2.7. Thermal analysis	172
3.4.2.8. Antibacterial properties	174
Conclusion	191
References	
Arabic Summary	Í

List of Tables

Table		Page
1 1	Summary of the different technologies used to	16
	extract nano-fibrillated cellulose	
2	Yield % and chemical composition of DPS fibers at	77
	different stages of purification	
3	Effect of APS treatment parameters (concentration,	77
	time and temperature) on CNC-AI	
4	Effect of APS treatment parameters (concentration,	78
	time and temperature) on CNC-AII	
5	Yield % of CNCs obtained by APS, sulfuric acid,	78
	and phosphoric acid treatments	
6	Zeta potential and the average particle size of CNCs	79
	obtained by APS, sulfuric acid, and phosphoric acid	
	treatments	
7	FT-IR absorption band assignments and relative	80
	intensities for raw, pulp, CI, and CII DPS fibers	
8	FT-IR absorption band assignments and relative	81
	intensities for different CNC samples	
9	The length and energy of hydrogen bonding for	82
	cellulose polymorphs and CNCs obtained by APS,	
	sulfuric acid, and phosphoric acid treatments	
10	Relative crystallinity index (<i>CrI</i>), average crystallite	82
	sizes (L), and d-spacing between the crystal planes	
	of treated and untreated DPS fibers	
11	Thermo-analytical and thermodynamic data of the	83
	thermal decomposition steps of raw, pulp, CI and	
	CII DPS fibers	
12	Thermo-analytical and thermodynamic data of the	84
	thermal decomposition steps of CNC samples	
13	TS, EB%, YM and S of CS bio-composite films	116
	loaded with CNC-AI and CNC-AII fractions	

List of Tables

14	Estimated parameters of BET model of CS bio-	116
	composites loaded with different fractions of CNC-	
	AI and CNC-AII	
15	TS, EB%, YM and S of CS bio-composite films	117
	loaded with different functionalized CNCI and	
	CNCII	
16	Diffraction angel and d-spacing between the crystal	118
	planes of CS bio-composite films loaded with	
	different functionalized CNCI and CNCII	
17	TGA and DTG parameters of CS bio-composite	119
	films loaded with different functionalized CNCI and	
	CNCII	
18	TS, EB%, and YM of the neat CS film, CS bio-	149
	composite loaded with varied fractions of βCD _{Cit}	
	and CS bio-composite loaded with 50% βCD _{Cit} and	
	varied fractions of CN	
19	Effect of βCD _{Cit} and CNC on WVP of CS bio-	149
	composite	
20	Antimicrobial activities of neat CS film and	150
	inclusion complexes of CS/50%βCD _{Cit} and CS/50%	
	βCD _{Cit} /7%CNC bio-composite films with CO	
21	The energy and length of hydrogen bonding for neat	176
	jute and treated jute fabric	
22	EDX elemental analysis of jute fabric treated with	176
	2%CS/2%P-NC and 2%CS/2%P-NC bio-composite	
23	Relative crystallinity index (<i>CrI</i>), average crystallite	177
	sizes (L), d-spacing between the crystal planes,	
	angle of diffraction (2 θ) and lignin content of treated	
	and neat jute fabric	
24	Thermo-analytical and thermodynamic data of the	177
	thermal decomposition steps of treated and neat jute	
	samples	
25	Qualitative antimicrobial data of treated and neat	178
	jute fabrics	

List of Figures

Figure		Page
1	Cellulose and CS biopolymer molecular	4
	structures (a & b)	
2	Hierarchical structure of cellulose extracted	6
	from plants	
3	Cellulose polymorphism transformations	6
4	The inter- () and intra- () chain hydrogen	7
	bonding pattern in CI and CII	
5	α -, β -, γ -CD molecular structure	10
6	Conventional treatments to obtain CNCs	18
7	Some possible routes of CNCs chemical	22
	modification	
8	Some representative applications of	27
	nanocellulose	
9	Some representative biomedical applications of	29
	CNCs	
10	Fabric finishing for enhanced properties and	31
	performance	
11	Some representative applications of	33
	nanotechnology in textiles	_
12	Schematic description concerning different	85
	treatments for the preparation of CNCs from	
42	DPS fibers	0.0
13	SEM of: (a) raw DPS, (b) unbleached pulp, (c)	86
	bleached CI polymorph, and (d) mercerized CII polymorph	
14	TEM graphs of: CNC (AI, AII), CNC (SI, SII),	87
14	and CNC (PI, PII)	67
15	Particle size distribution of: CNC (AI, AII),	88
13	CNC (SI, SII), and CNC (PI, PII)	00
16	FT-IR spectroscopy for raw DPS, unbleached	89
	pulp, bleached cellulose (CI) and mercerized	
	cellulose (CII) fibers	