

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

EARLY RESYNCHRONIZATION AND ERROR CONCEALMENT OF VIDEO TRANSMITTED OVER WIRELESS CHANNELS

by

Osama Abdel Latif Ahmed Lotfallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
COMPUTER ENGINEERING

B.

EARLY RESYNCHRONIZATION AND ERROR CONCEALMENT OF VIDEO TRANSMITTED OVER WIRELESS CHANNELS

by

Osama Abdel Latif Ahmed Lotfallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Computer Engineering

Under the Supervision of

Dr. Ahmed M. Darwish
Professor of Computer Engineering
Faculty of Engineering
Cairo University

Dr. Khaled M. El-Sayed
Doctor of Information Technology
Faculty of Computers and Information
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT July 2001

EARLY RESYNCHRONIZATION AND ERROR CONCEALMENT OF VIDEO TRANSMITTED OVER WIRELESS CHANNELS

by

Osama Abdel Latif Ahmed Lotfallah

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Computer Engineering

Approved by the

Examining Committee

Thesis Main Advisor

Prof. Dr. Ibrahim Farag,

Prof. Dr. Ahmed Darwish,

Prof. Dr. Samir Shaheen,

Member 2

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT July 2001 Halm

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Professor Ahmed M. Darwish for his guidance and support. I have truly benefited from working with him, and I greatly appreciate his care and dedication in constructively criticizing my work and my thesis.

I would also like to express my thanks to Doctor Khaled M. El-Sayed for his guidance. I have truly benefited from his co-supervision of my work.

I wish to also thank the other members of my committee, Professor Ibrahim Farag and Professor Samir Shaheen for their support.

Finally, I would like to thank my family for their continuous and unwavering support.

TABLE OF CONTENT

T !-4 -	£4_1.1	•	Page	
	f tables	***	įv	
LIST O	I ligure	es	<u>!</u> v	
LISUO	or abbre	viations	1	
	ract	A		
1.	Introd	luction	1	
	1.1	Research objectives	2	
	1.2	Previous work	2	
		1.2.1 Error Resilience		
		1.2.2 Error Concealment (EC)	4	
	1.3	Problem definition	4	
	1.4	Thesis organization		
2.	Backg	ground	7	
	2.1	MPEG-2 video standard		
		2.1.1 Coloring systems		
		2.1.2 MPEG chrominance sampling and MacroBlocks	. } 9	
		2.1.3 Discrete Cosine Transform (DCT)	10	
		2.1.4 Coefficient quantization	11	
		2.1.5 Entropy coding	13	
		2.1.6 MPEG coding models		
		2.1.7 Intra-picture (I-picture) coding		
		2.1.8 Inter-picture (P- and B-picture) coding		
		2.1.9 The video structure of MPEG-2 main profile	19	
		2.1.10 Typical MPEG-2 encoder		
	2.2	Transport Stream (TS)		
	2.3	Channel simulator	24	
		2.3.1 Transmitter and Receiver diagrams		
		2.3.2 Building components		
3.	Previo	Previous work in early resynchronization and error concealment		
	3.1	Error Detection		
		3.1.1 Source level error detection	31	
		3.1.2 Channel level error detection		
		3.1.3 Iterative decoding		
	3.2	Early Resynchronization (ER) algorithm	33	
		3.2.1 The ER algorithm for I-pictures	33	
		3.2.2 The ER algorithm for P-pictures	35	
	3.3	Differential parameter resolving	36	
		3.3.1 The DC parameter	36	
		3.3.2 The Motion Vector (MV) parameter	42	
		3.3.3 The Quantization Scale (QS) parameter		
		3.3.4 The MB-addressing parameter (positioning)	43	
		3.3.5 Discarding wrong MBs (partitioning)	45 45	
	3.4	8 - 8 (
	<i></i>	Error Concealment (EC) 3.4.1 Simple spatial concealment scheme		
		3.4.2 Error concealment schemes in the frequency dom	40	
		3.4.3 Error concealment schemes in the space domain.	4040	
		2. 112 Prior conceament schomes in the shace notigin	4/	

		3.4.4 Error concealment schemes in the time domain	49	
		3.4.5 Adaptive error concealment schemes	50	
4.	Early	resynchronization algorithm	53	
	4.1	Error detection		
		4.1.1 Channel decoder error detection		
		4.1.2 Source decoder error detection		
	4.2	Different states of MPEG-2 ER decoder		
	4.3	The ER algorithm for I-picture		
		4.3.1 Analysis of the current ER algorithms	62	
		4.3.2 Difficulties facing the current ER algorithms		
		4.3.3 The proposed Masking algorithm		
		4.3.4 The estimated time requirement of the ER algorithms	67	
	4.4	The ER algorithm for P-picture		
		4.4.1 Difficulties facing the ER algorithms for P-picture		
		4.4.2 The estimated time requirement of the ER algorithms for	P-	
		picture	74	
	4.5	Reversible Variable Length Codes (RVLC)	77	
5.	Paran	neter recovery after early resynchronization		
	5.1	The DC problem		
		5.1.1 DC frequency interpolation (enhanced with MB existence)	ce)	
		applied to luminance component	82	
		5.1.2 Difficulties with the frequency solutions	85	
		5.1.3 The spatial DC correction enhanced with MB existence	86	
	5.2	The Quantization Scale (QS) problem	88	
		5.2.1 Solution to QS in the spatial domain	89	
		5.2.2 Solution to QS in the frequency domain	92	
	5.3	The Motion Vector (MV) problem	93	
		5.3.1 The total averaging of MVs	94	
		5.3.2 The best of the averaged values solution		
		5.3.3 Difficulties with the previous solutions	96	
		5.3.4 The proposed median over median solution		
	5.4	The subslice partitioning		
	5.5	The positioning problem	100	
		5.5.1 The best location based on MSE of boundaries	101	
		5.5.2 Difficulties with the previous solution	102	
	5.6	Pseudo code of the proposed parameter adjustment	103	
6.	Simu	Simulation results .		
	6.1	The fidelity criteria	105	
	6.2	The DC correction results	107	
	6.3	The MV correction results	112	
	6.4	The QS correction results	117	
	6.5	The combined ER-EC results	118	
		6.5.1 The I-pictures results	119	
		6.5.2 The P-pictures results	124	
	6.6	Summary of results	130	
7.		clusion and recommendation for future work		
Refe	rences		133	