A Study of Epithelial Cell Neutrophil Activating Factor-VA in Bronchoalveolar Lavage of Critically Ill Pediatric Patients with Acute Lung Injury

A Thesis

Submitted for Partial Fulfillment of the Master Degree in Pediatrics

By Ayman Elsayed Sheta M.B.: B.CH

Supervisors

Prof. Dr. Tarek Ahmed Abdel-Gawwad

Professor of pediatrics Ain shams university

Dr. Hanan M. Ibrahim

Assistant Professor of Pediatrics

Dr. Manal M.Abdel-Aziz

Assistant Professor of Clinical Pathology

Faculty of Medicine Ain Shams University دراسة مستوى العامل المنشط للخلايا متعددة النواة-٧٨ في محلول غسل السنخات و الشعب الهوائية وعلاقته بمتلازمة الإصابة الحادة للرئة بمرضى الأطفال ذوى الحالة الحرجة

بحث مرجعي توطئة للحصول على درجة الهاجستير في طب الأطفال

رسالة مقدمة من الطبيب أيمن السيد شتا السيد شتا السيد سيد المسالوريوس الطب والجراحة

تحت إشراف أ.د./طارق أحمد عبد الجواد

> أستاذ طب الأطفال كلية الطب – جامعة عين شمس

د./ حنان محمد ابراهيم

أستاذ مساعد طب الأطفال كلية الطب – جامعة عين شمس

د./ منال محمد عبد العزيز

أستاذ مساعد – قسم التحاليل كلية الطب – جامعة عين شمس

كليـــة الطــــب – جــامعــة عين شمس

Acknowledgement

Praise be to Allah, the Merciful, the Compassionate for all the countless gifts I have been offered: One of these gifts is accomplishing this research work.

I wish to express my deepest gratitude and sincere appreciation toward *Prof. Dr. Tarek Ahmed Abdel-Gawwad* Professor of Pediatrics, Critical Care Department, Faculty of Medicine, Ain Shams University, Who devoted much of his precious time, effort and: generous advice for the completion of this work. Many thanks to his experienced guidance and encouragement.

I am so grateful to *Dr. Hanann M. Ibrahim*, Assistant Professor of pediatrics, Faculty of Medicine, Ain Shams University, for her valuable suggestions and: close supervision. She generously offered much of her valuable time to direct and answer my questions during the conduction of this thesis.

I am indebted to *Dr. Manal M. Abdel-Aziz*, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her close and meticulous supervision, broad understanding and friendly encouragement.

Contents

	rage
List of abbreviations	II
List of tables	IV
List of figures	V
Introduction and aim of the work	1
Review of Literature	٣
•Definition of ARDS	٣
•Incidence of ARDS	٤
Precipitating and risk factors for ARDS	٥
Pathology and pathogenesis of ARDS	٨
•Diagnosis of ARDS	77
•Differential diagnosis of ALI and ARDS.	70
•Radiological findings of ARDS	77
•Theraputic strategies for ARDS	٣٢
° Treatment of the inciting clinical disorders	٣٣
in patients with ARDS.	
^o Ventilatory Strategies in ARDS	٣٥
° Fluid and Hemodynamic management	٤٣
° Surfactant therapy	٤٣
°Glucocorticoids and other anti	٤٤
inflammatory agents	
°Inhaled nitric oxide and other vasodilators	٤٥
°Outcome	٤٦
•Chemokine structure	٥٠
•Chemokine receptors	٥٤
•Role in leuckocyte movement	00
•Role of chemokines in inflammatory disease	٥٦
•ARDS and CXC Chemokine	٥٧
Patients and Methods	٦٤
Results	٧٥
Discussion	97
Recommendations	
Summary & Conclusion	11.
References	117
Arabic summary	١٣٦

List of abbreviations

ALI	Acute lung injury
ALIS	Acute lung injury score
AP	Antero posterior
ARDS	Acute respiratory distress syndrome
Arg	Arginine (R)
BAL	Bronchoalveolar lavage
CHF	Congestive heart failure
CPK	Creatine phosphokinase
CT	Computerized tomography
CVP	Central venous pressure
DAD	Diffuse alveolar damage
DLco	Carbon monoxide diffusion
ECG	Electrocardiogram
ELR motif	Glutamic acid leucine arginine
ENA-YA	Epithelial neutrophil-activating protein VA
FIO,	Fraction of inspired oxygen
FOB	Fiberoptic bronchoscope
FVC	Forced vital capacity
G-CSF	Granulocyte colony stimulating factor
Glu	Glutamic acid (E)
GSH	Glutathione
ICU	Intensive care unit

II	Interleukin
IP- \.	Interferon induced protein
JVP	Jugular venous pressure
Leu	Leucine (L)
lgA	Immunoglobulin A
LPS	Lipopolysaccharide
MCP- \	Monocyte chemo-attractant protein -1
MIF	Macrophage inhibitory factor
MIG	Monokine induced by gamma interferon
MOF	Multiple organ failure
MV	Mechanical ventilation
PaO,	Partial pressure of oxygen
PCWP	Pulmonary capillary wedge pressure
PEEP	Positive end expiratory pressure
PMN	Polymorphonuclear lymphocytes
RV	Right ventricle
SaO	Saturation of oxygen
TLC	Total lung capacity
TNF	Tumor necrosis factor

List of Tables

Table		Page		
Table \	American European Consensus Conference			
	Criteria for Acute Lung Injury (ALI) and the Acute Respiratory Distress Syndrome			
	(ARDS).			
Table 7	Examples of direct and indirect precipitating			
	factors of acute lung injury (ALI) and the acute			
	respiratory distress syndrome (ARDS). Differential Diagnosis of Acute Lung Ye			
Table "	Differential Diagnosis of Acute Lung			
	Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS).			
Table ٤	Inciting Clinical Disorders Associated With ALI	٣٥		
14010	and ARDS.			
Table °	Protective lung ventilation protocol from the	٣٧		
	ARDS Network study.			
Table 7	The CXC chemokines.	07		
Table Y	The CC chemokines.	٥٣		
Table ^	The C and CX r C chemokines.			
Table 9	ELR ⁺ and ELR ⁻ CXC chemokines are angiogenic			
	and angiostatic factors, respectively.			
Table \.	Gender distribution of the studied subjects.	٧ ٦		
Table \\	Age distribution of the studied subjects.	٧٦		
Table 17	Diagnosis of the studied patients.			
Table ۱۳	Diagnoses of the studied controls.			
Table \ \ \ \ \	Clinical data among patients.			
Table 10	Clinical data among controls.			
Table 17	Comparison between patients and controls as regards the clinical data.	٧٩		
Table ۱۷	Comparison between patients and controls as regards the mean PRISM score.	۸۰		
Table \A	Comparison between patients and controls as	۸١		
= 5.5 2 5	regards mortality rate.			
Table 19	Comparison between patients and controls as	۸١		

	ma conde the moutine tob enetern investigation			
	regards the routine laboratory investigation.			
Table Y.	Comparison between patients and controls as regards the ventilatory settings.	۸۲		
Table ۲۱	Comparison between patients and controls as regards blood gases.	۸۳		
Table ۲۲	Comparison between patients and controls as regards the mean ENA-YA level in BAL.	٨٤		
Table ۲۳	Comparison between survivors and non-survivors as regards the primary diagnosis.			
Table ۲٤	Comparison between non survivors and survivor patients as regards the clinical data.	٨٦		
Table Yo	Comparison between non survivor and survivor patients as regards the mean PRISM score.	٦		
Table ۲٦	Comparison between non survivor and survivor patients as regards the ALI score.	۸٧		
Table YV	Comparison between non survivors and survivors as regards hypoxic score.			
Table ۲۸	Comparison between non survivors and survivors as regards the routine laboratory data.			
Table ۲۹	Comparison between non survivors and survivors as regards the ventilatory settings.			
Table **	Comparison between non survivors and survivors as regards blood gases.			
Table "\	Comparison between non survivors and survivor patients as regards the mean ENA-YA level in BAL.			
Table ۳۲	ROC curve (Receiver-operator characteristic curve) for detection of the best cut off point of ENA-YA for prediction of fate in ARDS patients.	9 £		
Table ۳۳	Stepwise regression analysis for the most important predictors of fate.	97		

List of Figures

Figure		Page	
Figure \	Lung autopsy specimen showing the exudative stage of acute respiratory distress syndrome.		
Figure Y	The Normal Alveolus and the Injured Alveolus in the Acute Phase of Acute Lung Injury and Acute Respiratory Distress Syndrome.		
Figure r	Lung biopsy specimen revealing overlapping of the fibroproliferative stage and the exudative stage.		
Figure [£]	DAD, fibrotic stage. Microcystic honeycomb pattern follows ARDS of oo days duration.		
Figure °	Mechanisms Important in the Resolution of Acute Lung Injury and the Acute Respiratory Distress Syndrome.		
Figure 7	Radiographic and Computed Tomographic (CT) Findings in the Acute, or Exudative Phase and the Fibrosing-Alveolitis Phase of Acute Lung Injury and Acute Respiratory Distress Syndrome.	۲۹	
Figure ^V	Diagnoses of the studied patients.	YY	
Figure ^	Comparison between cases and controls as regards the mean PRISM score.		
Figure 9	Comparison between cases and controls as regards the mean ENA-YA in BALF.	٨٤	
Figure \.	Comparison between survivors and non-survivors as regards the mean ALI score.	۸٧	
Figure \\	Comparison between survivors and non-survivors as regards the mean ENA-YA.	91	
Figure 17	Correlation coefficient between ENA-VA in BAL of ARDS patients and PRISM score.		
Figure \\"	Correlation coefficient between ENA-YA in BAL of ARDS patients and ALI score.		
Figure \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Correlation coefficient between ENA-YA in BAL of ARDS patients and hypoxic score.	9 £	
Figure 10	ROC curve of ENA-YA in ARDS patients.	90	

Introduction and aim of the work

Acute lung injury (ALI) refers to a syndrome of acute respiratory failure characterized by respiratory distress, severe impairment of oxygenation and non cardiogenic pulmonary edema. As ALI, like any other clinical syndrome, can vary in severity, acute respiratory distress syndrome (ARDS) is a term applied to patients with more severe manifestations of ALI. Both terms are used to reflect a relatively specific form of pathologic injury to the lung occurring from a wide range of causes or associated conditions (*Steinberg & Hudson*, **...*).

The cellular and molecular basis for ARDS remains uncertain for r, years after the original description of the syndrome. With the explosion of information about the involvement of cells and cytokines in inflammation, there has been an intense interest in understanding the involvement of cytokines in the pathogenesis of ARDS (*Mitchell & Martin*, 1919).

Diffuse alveolar damage (DAD) is the histopathological hallmark of (ARDS) and a significant portion of ARDS survivors have residual pulmonary fibrosis and compromised pulmonary function (Medruri et al., 1411).

This suggests that the pathogenesis of DAD that ultimately leads to the chronic fibrosis of ARDS has features of dysgulated repair with intra-alveolar deposition of extracellular matrix and vascular remodeling, leading to progressive alveolar fibrosis and impaired lung function (*Strieter et al.*, 1990).

The extensive pharmacological and physiological evidence that ENA-YA influences the acute respiratory distress syndrome was a stimulus to study the relation between its level in bronchoalveolar lavage fluid (BALF) and the severity as well as the outcome of acute respiratory distress syndrome (ARDS).

Review of Literature

Acute lung injury and acute respiratory distress syndrome

Definition:

Acute lung injury and its extreme manifestation, acute respiratory distress syndrome, complicate a wide variety of serious medical and surgical conditions, only some of which affect the lung directly. (Bernard et al., 1995)

The most recent definition of ARDS is that proposed by the 1995 American–European Consensus Conference Committee (AECC) (*Bernard et al.*, 1995): a syndrome of acute onset, with bilateral infiltrates on chest radiography consistent with pulmonary edema, pulmonary-artery wedge pressure less than 14 mmHg or clinical absence of left atrial hypertension, and hypoxemia with a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen $(PaO_7/FIO_7) \leq 7\cdots$ Patients meeting the above criteria but with PaO_7/FIO_7 ratio $\leq 7\cdots$ are diagnosed with acute lung injury (ALI).

Table (1): American European Consensus Conference
Criteria for Acute Lung Injury (ALI) and the Acute
Respiratory Distress Syndrome (ARDS) (Bernard et
al., 1995)

Clinical Variable	Criteria for ALI	Criteria for ARDS
Onset	Acute	Acute
Hypoxemia	Paor /FIor ≤r·· mm	Pao₁ /FIo₁ ≤٢·· mm
	Hg	Hg
Chest radiograph	Bilateral infiltrates	Bilateral infiltrates
	consistent with	consistent with
	pulmonary edema	pulmonary edema
Non-cardiac cause	No clinical evidence	No clinical evidence
	of left atrial	of left atrial
	hypertension or, if	hypertension or, if
	. 1	measured, pulmonary
	•	artery occlusion
	pressure ≤ \ \ mm Hg	pressure ≤ \ \ mm Hg

Incidence:

almost two-thirds of these evolved to ARDS within $\ ^{\ }$ days. These data are consistent with an Australian survey (*Bersten et al.*, $\ ^{\ }$, $\ ^{\ }$) showing that $\ ^{\ }$, $\ ^{\ }$, of ICU admissions meet criteria for ALI/ARDS, with a similar rate of progression from mild ALI to ARDS. A $\ ^{\ }$ A-day international survey by Esteban and colleagues found that $\ ^{\ }$, $\ ^{\ }$, of ICU patients requiring mechanical ventilation for more than $\ ^{\ }$ $\ ^{\ }$ h and $\ ^{\ }$, of patients requiring mechanical ventilation for acute respiratory failure have ARDS (*Esteban et al.*, $\ ^{\ }$, $\ ^{\ }$).

Precipitating factors:

ALI and ARDS can be considered to be a "final common pathway" reaction of the lung to a large variety of precipitating causes. Some authors have classified these causes as direct (pulmonary) or indirect (extra-pulmonary or systemic) injury to the lung. Not all patients with these precipitating conditions develop ALI/ARDS. (Gattinoni et al., 1994)