Corneal topography changes after Femtosecond assisted Intracorneal rings in treatment of moderate keratoconus

Thesis

Submitted for partial Fulfillment of Master Degree in Ophthalmology

Ву

Mohamed Hassan Ali Mohamed

(M.B.B.Ch)

Cairo University

Supervised by
Prof.Dr.Rafek EL Ghazzawy
Professor of Ophthalmology
Faculty of Medicine
Ain Shams University

Dr.Reham Fawzy Elshinawy
Lecturer of Ophthalmology
Faculty of Medicine
Ain Shams Univercity

Faculty of Medicine Ain Shams University Cairo, 2015

Table of contents

	Page
Acknowledgment	А
Abstract	В
List of abbreviations	D
List of tables	E
List of figures	F
Introduction	1
Aim of the work	3
Review of Literature	4
Patients and Methods	68
Results	76
Discussion	90
Conclusion	94
Summary	95
References	97
Arabic summary	1

Acknowledgement

First and foremost, I always feel indebted to "Allah" the most kind and merciful.

I owe my deepest gratitude to Prof.Dr.Rafek EL Ghazzawy, Professor of Ophthalmology, Ain Shams University, for his continuous support, great help and valuable supervision throughout this work.

My great appreciation and thanks to Dr.Reham Fawzy Elshinawy, lecturer of Ophthalmology, Ain Shams University, for her continuous encouragement, kind support and skillful guidance.

Finally, I am very thankful and grateful to all my family, my colleagues and every one gave a hand to accomplish this work.

Abstract

Purpose:

To evaluate changes in corneal topography indices after intracorneal rings implantation by means of femtosecond laser technology in eyes with moderate keratoconus and analyze associations of these changes with visual acuity.

Design:

Retrospective, non-randomized.

Patients and methods:

A total of 40 eyes of 30 patients with a mean age of 33.23 years ± 4.45 (SD) were included; 15 patients were males (50%) and 15 patients were females (50%). All cases were diagnosed as keratoconus according to the standard criteria.

All cases presented with reduced best spectacle-corrected visual acuity, contact lens intolerance or discomfort, and pachy apex of more than 400 μ m. Ferrara Rings were implanted in all cases into an intrastromal corneal tunnel created by means of femtosecond technology.

Main Outcome Measures:

Uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), average keratometric value (K- value) and spherical equivalent (SE).

Results:

A significant improvement in UCVA & BCVA was observed after surgery at 1 day, 3m and 6m postoperatively. The mean UCVA (LogMAR) increased from 1.03 ± 0.51 preoperatively to 0.56 ± 0.17 , 0.47 ± 0.16 and 0.44 ± 0.12 at 1day. 3m and 6m postoperatively, respectively. And there is also increase of the mean BCVA (LogMAR) from 0.49 ± 0.14 preoperatively to 0.37 ± 0.11 , 0.33 ± 0.12 and 0.29 ± 0.14 at 1day, 3m and 6m postoperatively, respectively. This was consistent with the significant reduction in spherical equivalent from -5.62 ± 3.61 diopters (D) Preoperatively to -2.53 ± 2.49 D, -2.23 ± 2.47 D and -2.45 ± 2.32 D at 1day,3m and 6m postoperatively respectively. Furthermore, a significant improvement in average K from 48.12 \pm 2.86D preoperatively to 45.41 \pm 2.93D , 45.48 \pm 2.96D and after 1day,3m and 6m postoperatively. 45.48 \pm 2.98D respectively.

Conclusion:

The implantation of Intracorneal rings (FerraraRings) has proven to be a safe and feasible alternative procedure for the treatment of mild-moderate keratoconus especially for patients with contact lenses intolerance and it delays or eliminates the need for PKP.

Key Words:

Keratoconus – Femtosecond - Implantation of FerraraRings.

List of abbreviations

Abbreviation	Full name
AB	Asymmetric Bowtie
AB/SRAX	Asymmetric bow tie with skewed radial axes
	pattern.
BCVA	best corrected visual acuity
BFS	best fit sphere
BFTE	best fit toric ellipsoid
CISIS	corneal intrastromal implantation system
CXL	Corneal crosslinking
DLK	Deep Lamellar Keratoplasty
FFKC	Forme Fruste Keratoconus
Fig	Figure.
FS	Femtosecond
ICRS	Intracorneal ring segments.
Intacs	Intrastromal Corneal Ring Segments.
IS	Inferior Steep
KC	keratoconus
K-value	Keratometric value
OCT	Optical coherence tomography
PKP	penetrating keratoplasty
PMD	pellucid marginal degeneration
PMMA	polymethyl methacrylate
PRK	Photorefractive keratectomy
SB	Symmetric bowtie
SD	Standard deviation from the mean
SE	spherical equivalent
SS	Superior Steep
UCVA	uncorrected visual acuity
UV	ultraviolet

List of tables

Table no.	name	page
1	the Amsler-Krumeich classification for	31
	keratoconus	
2	comparison between different ICRS	58
3	Studies of ICRS implantation in keratoconus	60
4	Age and sex distribution among the studied patients	76
5	Comparison of UCVA at 1 day, 3 months and 6 months with the preoperative UCVA results	77
6	Comparison of BCVA at 1 day, 3 months and 6 months with the preoperative BCVA results	78
7	Comparison of spherical equivalent at 1 day, 3 months and 6 months with the pre spherical equivalent results	79
8	Comparison of average K at 1 day, 3 months and 6 months with the preoperative average K results	80
9	Correlation between the studied parameters at the baseline	81
10	Correlation between the studied parameters at 1 day	83
11	Correlation between the studied parameters at three months	85
12	Correlation between the studied parameters at six months	88

List of figures

Fig.no.	name	page
1	Corneal layers	6
2	corneal thinning, scarring, and apoptosis	11
3	Breaks in Bowman's layer	14
4	breaks in Bowman's layer and subsequent accumulation	14
	of fibrillar connective tissue within the spaces	
5	Corneal histology of a rupture in Descemet's membrane	16
6	Munson's sign	19
7	Rizzuti's sign	20
8	'oil droplet' reflex	21
9	Focal corneal thinning in keratoconus	22
10	focal corneal thinning in PMD	22
11	Fleischer's ring	23
12	Vogt's striae	24
13	anterior corneal scars	24
14	Hydrops cornea	25
15	Nipple cone	26
16	Oval cone	26
17	Globus cone	27
18	The elevation map displayed in the best fit sphere float	28
	mode	
19	The elevation map displayed in the best fit toric	28
	ellipsoid float mode	
20	Dome shape of the cone in KC on corneal thickness map	28
21	Bell shape of the cone in PMD on the corneal thickness	28
	map	
22	Patterns of the anterior curvature map	30
23	Forme Fruste Keratoconus	33
24	Axial curvature map showing typical "crab	34
	claw"/"butterfly wing" pattern of pellucid marginal	
	degeneration	
25	placido disc imaging of anterior corneal surface.	36
26	A typical quad map of a patient with keratoconus	37
27	A Scheimpflug image	39
28	Deep Lamellar Keratoplasty	42
29	Various shapes used in laser assisted keratoplasty	44

30	increased chemical bonds in corneal stroma by means of	46
	cross linking	
32	the Barraquer thickness law	50
33	Mechanism of action of intracorneal rings	50
34	The skew action of the segment	51
35	Principle of action of intracorneal rings	52
36	The Intacs segments	54
37	The Ferrara ring segments	56
38	OCT anterior segment showing implanted Ferrara ring	57
39	Variable arc lengths of Keraring	59
40	MyoRing is a continuous PMMA ring	61
41	Segment migration through tunnel	65
42	Neovascularization of the wound	65
43	Alcon FS200 femtosecond laser	73
44	preoperative pentacam of a patient with keratoconus	74
45	Postoperative pentacam of the same patient	74
46	changes in UCVA	77
47	changes in BCVA	78
48	changes in spherical equivalent	79
49	keratometric changes	80
50	negative correlation between preoperative UCVA and	82
	preoperative spherical equivalent	
51	negative correlation between preoperative average K	82
	and preoperative spherical equivalent	
52	positive correlation between UCVA and BCVA	84
53	negative correlation between average K and spherical	84
	equivalent	
54	positive correlation between UCVA and BCVA at 3m	86
	postoperatively	
55	negative correlation between UCVA and spherical	86
7.0	equivalent at 3m postoperatively	0.5
56	negative correlation between average K and spherical	87
57	equivalent at 3m postoperatively	00
57	positive correlation between UCVA and BCVA at 6m	89
50	postoperatively	90
58	negative correlation between average K and spherical	89
	equivalent at 6m postoperatively	

Introduction

Keratoconus is a degeneration of the cornea; 84% of all cases begin between the ages of 20 and 49 years, usually (80-85%) with bilateral cone-shaped corneal bulging and stromal thinning.(1)

Disease manifestation is highly variable. It can vary from slightly irregular astigmatism to severe visual impairment because of increased corneal protrusion and subepithelial scarring. Because of the young age of the patients, this disease often has a dramatic effect on quality of life and life planning.(2,3)

Keratoconus is slowly progressive with gradual loss in visual acuity, especially low-contrast visual acuity, even with best visual correction in place (4). Likewise, the corneal curvature worsens, gradually steepening, in association with decreasing best-corrected visual acuity. Younger age at onset is generally believed to be associated with faster progression and worse outcomes. (5)

Intracorneal ring segments (ICR) are thin semicircular inserts made of polymethylmethacrylate that are implanted in the corneal stroma to shorten the arc length of the central corneal surface and result in corneal surface flattening. Intracorneal ring segments have been used to treat corneal ectatic disorders such as keratoconus and post-LASIK ectasia, as well as myopia.(6)

The femtosecond laser may be programmed to create tunnels for ICR implantation. This technique has been shown to be comparable to manual tunnel dissection in terms of visual and refractive outcomes. The consistency of depth, uniformity of cut, and the minimal trauma induced when creating the channels using the femtosecond laser can make insertion of the ICR easier and minimize the duration of the procedure. (7)

Aim of work

To evaluate changes in corneal topography indices after intracorneal rings implantation in patients with moderate keratoconus and analyze associations of these changes with visual acuity.

Anatomy of the cornea

The human cornea, like those of other primates, has five layers (Fig.1). ⁽⁸⁾ From the anterior to posterior the five layers of the human cornea are:

1. Corneal epithelium:

An exceedingly thin multicellular epithelial tissue layer (non-keratinized stratified squamous epithelium) of fast-growing and easily regenerated cells, kept moist with tears. Irregularity or edema of the corneal epithelium disrupts the smoothness of the air/tear-film interface. (9)

2. Bowman's layer:

Also known as the anterior limiting membrane, when in fact it is not a membrane but a condensed layer of collagen

3. Corneal stroma (substantia propria):

A thick, transparent middle layer, consisting of regularly arranged collagen fibers along with sparsely distributed interconnected keratocytes, which are the cells for general repair and maintenance.⁽¹⁰⁾

4. Descemet's membrane (posterior limiting membrane):

A thin acellular layer that serves as the modified basement membrane of the corneal endothelium, from which the cells are derived. This layer is composed mainly of collagen type IV fibrils, less rigid than collagen type I fibrils, and is around 5-20µm thick. (11)

5. Corneal endothelium:

simple squamous low cuboidal monolayer, or approximately 5µm thick, of mitochondria-rich cells. These cells are responsible for regulating fluid and solute transport between the agueous and corneal stromal compartments. Unlike the corneal epithelium the cells of the endothelium do not regenerate. Instead, they stretch to compensate for dead cells which reduce the overall cell density of the endothelium, which has an impact on fluid regulation. If the endothelium can no longer maintain a proper fluid balance, stromal swelling due to excess fluids and subsequent loss of transparency will occur and this may cause corneal edema and interference with the transparency of the cornea and thus impairing the image formed (11)