

Ain-Shams University Faculty of Medicine Anesthesia and Intensive Care Department

Special Events Related To Mechanical Ventilation

Essay

Submitted for Partial Fulfillment of Master Degree in **Anesthesia**

Beshoy Gamal Nazeem Saad

M.B.B.Ch. Ain-Shams University

Under Supervision of

Prof. Dr. Azza Atef Abdel-alim

Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain-Shams University

Dr. Noha Sayed Hussein

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine, Ain-Shams University

Dr. Gamal Eldin Adel Abdelhamid

Lecturer of Anesthesia and Intensive Care Faculty of Medicine, Ain-Shams University

Faculty of Medicine Ain-Shams University 2017

First of all, I wish to offer my deepest gratitude to **ALLAH** for enabling me to achieve this work.

I would like to express my highest gratitude to **Prof. Dr. Azza Atef Abdel-alim,** Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for giving me the privilege of working under her instructive and helpful guidance.

I am truly Indebted to **Dr. Noha Sayed Hussein,** assistant professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for her generous help & endless advices.

And special thanks to **Dr. Gamal Adel**, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for his great help and support throughout this work.

Beshoy Gamal

List of Contents

Subject	Page	
List of Abbreviations		
List of Tables	iii	
List of Figures	iv	
Introduction	1	
Aim of the Work		
Review of Literature		
Chapter (1): Respiratory Physiology		
Chapter (2): Respiratory Failure		
Chapter (3): Mechanical Ventilator Indications and		
Management	26	
Chapter (4): Ventilator Associated Events:		
- Ventilator Induced Lung Injury (VILI)	54	
- Ventilator-Associated Pneumonia (VAP)	64	
- Cardiovascular Effects of Mechanical Ventilator	77	
- Oxygen Toxicity	87	
- Airway Complications of Mechanical Ventilator	93	
Chapter (5): Prevention of Ventilator Associated Events	101	
Summary		
References		
Arabic Summary		

List of Abbreviations

Abb.	Meaning
A/C	Assist-Control
ABG	Arterial blood gas
ACRF	Acute exacerbation of chronic respiratory
	failure
ALI	Acute lung injury
AMI	Acute myocardial infarction
ARDS	Acute respiratory distress syndrome
ASV	Adaptive support ventilation
BAL	Bronchoalveolar lavage
BPAP	Bilevel Positive Airway Pressure
CaO ₂	Arterial oxygen content
CDC	The Center for Disease Control and Prevention
CMV	Controlled Mechanical Ventilation
CPAP	Continuous Positive Airway Pressure
CPIS	Clinical Pulmonary Infection Score
CRP	C-reactive protein
CvO ₂	Mixed venous oxygen content
DO_2	Oxygen delivery
ECMO	Extracorporeal membrane oxygenation
EPAP	Expiratory positive airway pressure
ETT	Endotracheal tube
FRC	Functional Residual Capacity
ICU	Intensive care unit
IPAP	Inspiratory positive airway pressure
ITP	Intrathoracic pressure
IVAC	Infection-related Ventilator-Associated
	Complication
MIP	Maximum inspiratory pressure
MRSA	Methicillin resistant Staphylococcus aureus
MSSA	Methicillin sensitive Staphylococcus aureus
MV	Mechanical ventilation
NAVA	Neurally adjusted ventilatory assist
NHSN	National Healthcare Safety Network

Abb.	Meaning
NICE	The National Institute for Health and Care
	Excellence
NIPPV	Non-invasive positive pressure ventilation
NIV	Non-invasive ventilation
ODC	Oxygen dissociation curve
PaCO ₂	Arterial carbon dioxide tension
PAO ₂	Alveolar O ₂ tension
PaO ₂	Arterial oxygen tension
PAV	Proportional assist ventilation
PEEP	Positive end-expiratory pressure
PPV	Positive-pressure mechanical ventilation
PSB	Protected specimen brush
PSV	Pressure Support Ventilation
PVAP	Possible and Probable VAP
PVR	Pulmonary vascular resistance
RF	Respiratory failure
ROS	Reactive O ₂ species
SATs and	Spontaneous awakening and breathing trials
SBTs	
SIMV	Synchronized Intermittent Mandatory Ventilation
sTREM-1	Soluble triggering receptor expressed on
	myeloid cells-1
TEF	Formation of a tracheoesophageal fistula
TNF	Tumor necrosis factor
VA/Q	Ventilation-perfusion ratio
VACs	Ventilator Associated Conditions
VAE	Ventilator-Associated Events
VAP	Ventilator-associated pneumonia
VC	Vital capacity
VILI	Ventilator-induced lung injury
V-PSV	Variable pressure support ventilation

List of Tables

Table No.	Title	Page
Table (1)	Most frequent causes of AFR	14
Table (2)	Factors inducing and preventing ventilator-induced lung injury	55
Table (3)	Clinical Pulmonary Infection Score (CPIS)	76

List of Tables 📚

List of Figures

Figure No.	Title	Page
Figure (1)	Upper and lower respiratory tract	7
Figure (2)	Gas exchange in alveolar capillary membrane	7
Figure (3)	Types of respiratory failure	12
Figure (4)	Ventilator associated event algorithm	49
Figure (5)	Pathogenesis of VAP	66
Figure (6)	Hemodynamic effects of changes in intrathoracic pressure	78

Introduction

A mechanical ventilator is a machine that makes it easier for patients to breath until they are able to breathe completely on their own. Early mechanical ventilation in humans was described in the 18th century by Hunter, who performed ventilation using bellows to artificially ventilate drowned patients through a tracheostomy. In the same century, Kite described the technique of endotracheal intubation. After a period of negative pressure ventilation, induced by the invention of the iron lung in 1929, Ibsen finally introduced positive pressure ventilation outside the operating theatre in 1952. This development marked the birth of the modern intensive care unit (ICU) (**Puri et al., 2009**).

There are many clinical indications for mechanical ventilation but the primary indication is impending or existing respiratory failure despite maximal treatment (Esteban et al., 2002).

However, many complications occurred by mechanical ventilation itself, such as barotrauma, volutrauma, atelectotrauma and biotrauma. Ventilator-induced lung injury (VILI) is major cause of death in the acute respiratory distress

syndrome (ARDS) with multiple organ failure together. Such complications can lead to longer duration of mechanical ventilation, longer stays in the ICU, increased healthcare costs, increased risk of disability and death (**Plotz et al., 2004**).

Multiple lines of evidence, however, suggest that Ventilator Associated Conditions (VACs) are complications rather than just markers of severity of illness. the definition requires patients to have a period of at least 2 days of respiratory stability or improvement before they are eligible for VAC, published estimates of attributable length of stay and mortality were adjusted for baseline severity of illness and qualitative analysis of VAC suggest that most events are caused by potentially preventable conditions acquired in the ICU, namely, pneumonia, pulmonary edema, atelectasis and ARDS (Hayashi et al., 2013).

There are many strategies that can be applied to minimize the risk of VILI. The most important is the use of lower tidal volumes for positive-pressure ventilation. Low tidal volumes can result in airway collapse, particularly at the end of expiration which can be prevented by adding positive end-expiratory pressure (PEEP) and by recruitment maneuvers. Another consequence of low volume

ventilation is a reduction in CO₂ elimination via the lungs leading to hypercapnia and respiratory acidosis. Allowing hypercapnia to persist in favor of maintaining lung-protective low-volume ventilation is known as permissive hypercapnia (**Girad and Bernard, 2007**).

Aim of the Work

The aim of this essay is to highlight on the incidence, possible hazards, how to treat and methods to prevent complications of mechanical ventilation.

Respiratory Physiology

The respiratory system performs the vital function of gaseous exchange. Oxygen (O₂) is transported through the upper airways to the alveoli that diffuses across the alveolocapillary membrane and enters the capillary blood. There, it combines with haemoglobin and is transported by the arterial blood to the tissues. In the tissues, the Oxygen is utilized for adenosine triphosphate (ATP) production which is essential for all metabolic processes. The major product of cellular metabolism, Carbon dioxide (CO₂), diffuses from the tissues into the capillary blood, where a major portion of it is hydrated as carbonic acid and transported to the lungs by the venous blood. In the lungs, it diffuses from the pulmonary blood into the alveoli and is exhaled into the atmosphere (the process of Expiration). Gaseous exchange appropriate to the metabolic demand is essential to maintain homeostasis (Neema, 2003).

Respiration is accomplished and regulated by an complicated set of structures. These structures include: (1) the lungs that provide the gas exchange surface; (2) the conducting airways that convey the air into and out of the lungs; (3) the thoracic wall that acts as a bellows which supports and protects the lungs; (4) the respiratory muscles

that creates the energy necessary for the movement of air into and out of the lungs; and (5) the respiratory centers with their sensitive receptors and communicating nerves that control and regulate ventilation. The interactions of cardiopulmonary, nervous and musculoskeletal systems can be disrupted by disease, surgery and anesthetic agents (Papadakos, 2002).

Gaseous exchange between the environment and the pulmonary capillary blood constitutes external respiration. The functioning unit of the lung is alveolus with its capillary network. Various factors govern transport of air from the environment to the alveoli (ventilation) and supply of blood to the pulmonary capillaries (perfusion). Henry's law dictates that when a solution is exposed to an atmosphere of gas an equilibration of partial pressures follow between the gas molecules dissolved in the liquid and the gas molecules in the atmosphere. Consequently, partial pressure of O_2 and CO_2 in the blood leaving the pulmonary capillaries (pulmonary venous blood) is equal to the partial pressure of O_2 and CO_2 achieved in the alveolus after equilibration(**Figure 1**) (**Neema, 2003**).

The **upper airways** or **upper** respiratory tract includes the nose and nasal passages, paranasal sinuses, the pharynx, and the portion of the larynx above the vocal folds

(cords). The **lower airways** or **lower** respiratory tract includes the portion of the larynx below the vocal folds, trachea, bronchi and bronchioles (**Figure 2**) (**Papadakos**, **2002**).

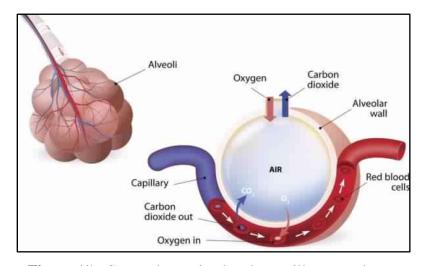
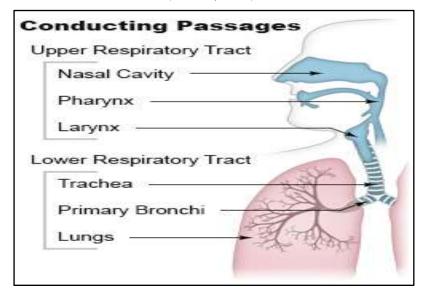



Figure (1): Gas exchange in alveolar capillary membrane (Neema, 2003).

<u>Figure (2):</u> Upper and lower respiratory tract (**Papadakos**, 2002).

At equilibrium, the partial pressure of O₂ and CO₂ results from a dynamic equilibrium between O2 delivery to the alveolus and O₂ extraction from the alveolus; and CO₂ delivery to the alveolus and CO₂ removal from the alveolus. Delivery of O2 to the alveolus is directly related to the sweep rate of air (ventilation), and composition of the sweeping gas (partial pressure of O₂ in the inspiratory air FiO_2). In general, alveolar O_2 tension (PAO₂) increases with increase in inspiratory O2 tension and increase in ventilation. Extraction of O₂ from the alveolus is determined by the saturation, quality and quantity of the haemoglobin of the blood perfusing the alveoli. The O₂ saturation of the haemoglobin in the pulmonary capillary blood is affected by the supply of O_2 to the tissues (cardiac output) and the extraction of the O2 by the tissues metabolism (Neema, 2003).

Oxygen delivery (DO₂) is the rate at which oxygen is transported from the lungs to the microcirculation: DO₂ (mL/min) = Q x CaO₂ where Q is the cardiac output. Oxygen consumption (VO₂) is the rate at which oxygen is removed from the blood for use by the tissues. It can be measured directly or calculated. Calculation of VO₂ can be