The Role of Human Fatty Acid Binding Protein as an Early Predictive Biomarker for Carbon Monoxide Induced Cardiotoxicity

(A Prospective study)

Thesis

Submitted for Partial Fulfillment of Master Degree In Clinical Toxicology

By Somaia Anwar Ali

Demonstrator in Forensic Medicine and Clinical Toxicology Department Faculty of Medicine – Ain Shams University

Under Supervision of Prof. Dr. Suzan Mostafa Mahmod

Professor in Forensic Medicine and Clinical Toxicology Department Faculty of Medicine- Ain Shams University

Dr. Hend Mohammad Elhelaly

Assistant Professor in Forensic Medicine and Clinical Toxicology Department Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Abstract

Introduction: Carbon monoxide (CO) is an odorless, colorless, tasteless, non-irritating gas formed as a by-product of burning organic compounds. The affinity of hemoglobin for CO is 200 to 250 times greater than its affinity for oxygen. This results in competitive inhibition of oxygen release due to a shift in the oxygen-hemoglobin dissociation curve, reduced oxygen delivery, and subsequent tissue hypoxia.

Aim of the Work: This study aims to assess the role of human fatty acid binding protein as an early predictor biomarker for carbon monoxide induced cardiotoxicity among patient admitted to the Poison Control Center Ain Shams University Hospitals.

Patients and Method: A prospective observational study was conducted beginning from November 2015 to April 2016 for adult (18-65 years old) patients with history of acute moderate and sever carbon monoxide intoxication of both sex, admitted to PCCASUH. 25 patients were included in this study according to sample size determined by statistical specialist at community medicine and environmental department, faculty of medicine, Ain Shams University.

Results: *Group 1* (moderately intoxicated cases):

All patients diagnosed as acute moderate CO poisoning who were seven patients (28%) of all patients.

Group 2 (severely intoxicated patients):

All patients diagnosed as acute severe CO poisoning who were eighteen patients (72%) of all patients.

Conclusion: From the current study it was concluded that identification of the degree of cardiac injury is essential in patients admitted and followed-up with the diagnosis of CO intoxication. ECG, cardiac enzymes, and even echocardiography should be performed in the ED on these patients to determine the level of injury.

Keywords: Human Fatty Acid, Early Predictive Biomarker, Carbon Monoxide,

سورة البقرة الآية: ٣٢

Acknowledgement

First of all, I would like to express my deep gratitude to ALLAH for his care and generosity throughout my life...

I would like to express my sincere appreciation and my deep gratitude to Prof. Dr. Suzan Mostafa Mahmod, Professor of Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine – Ain Shams University for her valuable advise and support through the whole work and for dedicating much of her precious time to accomplish this work. I would like to express my sincere appreciation and my deep gratitude to Dr. Hend Mohammad Elhelaly, Assistant Professor of Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine -Ain Shams University sincere efforts, fruitful encouragement and guidance. I am also very grateful to express my deep appreciation to My Family, especially My Parents and my husband for their continuous support and guidance.

Somaia Anwar Ali

Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	ix
Introduction	1
Aim of the Work	3
Review of Literature	
Carbon Monoxide Poisoning	4
Risk Factors for Carbon Monoxide To	oxicity16
 Pathological Effects of CO Poisoning 	18
• Investigations of Carbon Monoxide F	oisoning27
Human Fatty Acid Binding Proteins ((HFABP)37
• Treatment of Carbon Monoxide Pois	oning47
• Follow up of Carbon Monoxide Poisc	oning52
Patients and Method	54
Results	75
Discussion	119

Title	Page No.
Summary	142
Conclusion	147
Recommendations	148
References	150
Arabic Summary	

List of Abbreviation

Abbreviation	Meaning
A-FABP	Adipocyte fatty acid binding protein
ALT	Alanine amino transfrease
ANP	Atrial natriuretic peptide
AST	Aspartate amino transferase
ATA	Atmosphere of absolute prusser
ATP	Adenosine triphosphate
B-FABP	Brain fatty acid protein
BNP	Brain natruritic peptids
CAD	Coronary artery disease
CBC	Complete blood count
CD-4	Cluster of differentiation
CNS	Central nervous system
CO	Carbon monoxide
сонь	Carboxyhemoglobin
СРК	Creatine phosphokinase
CPK-BB	Creatine phosphokinase brain
СРКМВ	Creatine phosphokinase myocardial brand
CPK-MM	Creatine phosphokinase skeletal muscle
CSF	Cerebrospinal Fluid
CT	Computed tomography
CTnI	Cardiac troponin I
CTnT	Cardiac troponin T
DIC	Disseminated intravascular coagulation
DNS	Delayed neurological sequalea
ECG	Electrocardiography
E-FABP	Epidermal fatty acid binding protein

Abbreviation	Meaning	
ESC	European Society of Cardiology	
FABPs	Fatty acid binding proteins	
FA-CoA	Fatty acids acyl-CoA	
FAs	Fatty acids	
Hb	Hemoglobin	
НВОТ	Hyperbaric oxygen therapy	
HF	Heart Failure	
HFABP	Human fatty acid binding protein	
H-FABP	Heart type fatty acid binding protein	
ICU	Intensive care unit	
iLBP	Intracellular lipid-binding protein	
Il-FABP	Ilial fatty acid binding protein	
INR	International normalization ratio	
IP	Inpatient	
k	Potassium	
LDH	Lactate dehydrogenase	
LV	Left ventricle	
MBP	Myelin basic protein	
M-FABP	Myelin fatty acid binding protein	
MI	Myocardial Infraction	
MPV	Mean Platelet Volume	
MV	Mechanical ventilation	
Na	Sodium	
NADH	Nicotinamide adenine dinucleotide	
NADPH	Nicotinamide adenine dinucleotide phosphate	
NO	Nitric oxide	

Abbreviation	Meaning
NSTEMI	Non ST segment elevation myocardial infarction
NT-ProBNP	Terminal prohormone of brain natriuretic peptide
PaO ₂	Partial pressure of arterial O ₂
PCCASUH	Poison Control Center Ain Shams University Hospitals
PCO_2	Partial pressure of arterial CO ₂
PPM	Part per million
PT	Prothrombin time
PTT	Partial prothrombin time
ROS	Reactive oxygen species
SaO ₂	Oxygen saturation
SGOT	Serum glutamic oxaloacetic transaminase
SIRS	Systemic inflammatory response syndrome
T-FABP	Testicular fatty acid binding protein
Tpa	Tissue Plasminogen Activator
USCPSC	United state consumer product safety
	commission
V.D	Vasodilatation

List of Tables

Table No.	. Title	Page No.	
Table (1):	Show sources of carbon monoxide		8
Table (2):	Clinical signs and symptoms as	ssociated with	25
	acute carbon monoxide poisoning a	re arranged	
Table (3):	Suggested Indications for Hyper	baric Oxygen	50
	after acute carbon monoxide poisor	ning	
Table (4):	Glassgo coma scale		58
Table (5):	Student "t" test comparison of age	between both	76
	groups of acute carbon monox	kide poisoned	
	patients who were admitted to the l	Poison Control	
	Center Ain Shams University	ty Hospitals	
	(PCCASUH), in the period starting	ng from 1st of	
	November 2015 to 30th of April 20	016	
Table (6):	Chi-square test comparison of ge	nder, smoking	77
	habits and presence of other disc	eases between	
	both groups of acute carbon mono	oxide poisoned	
	patients who were admitted to the	Poison Control	
	Center Ain Shams University	ty Hospitals	
	(PCCASUH), in the period starting	ng from 1st of	
	November 2015 to 30th of April 20	016	
Table (7):	Chi-square test comparison of into	oxications data	80
	(mode, rout of exposure a	and previous	
	managements)and student "t" test	comparison of	
	delay time between both groups o	f acute carbon	
	monoxide poisoned patients who	were admitted	
	to the Poison Control Center	Ain Shams	
	University Hospitals (PCCASUH)	, in the period	
	starting from 1st of November 20	015 to 30th of	
	April 2016		

Table No.	Title	Page No.
Table (8):	Student "t" test comparison of and Glasgow coma scale (groups of acute carbon patients who were admitted to Center Ain Shams University (PCCASUH), in the period November 2015 to 30th of A	GCS) between both monoxide poisoned to the Poison Control niversity Hospitals starting from 1st of
Table (9):	Chi-square test compare manifestations between both carbon monoxide poisoned admitted to the Poison Control University Hospitals (PCCA starting from 1st of Novem April 2016	th groups of acute patients who were ol Center Ain Shams SUH), in the period
Table (10):	Chi-square test of electroa finding between both groumonoxide poisoned patients to the Poison Control Cuniversity Hospitals (PCCA starting from 1st of Novem April 2016.	ups of acute carbon who were admitted Center Ain Shams SUH), in the period
Table (11):	ANOVA test comparinvestigations (Hb%, urea, crown Na, K and blood glucose) be of acute carbon monoxide powere admitted to the Poison Shams University Hospitals period starting from 1st of 30th of April 2016	reatinine, ALT, AST, etween both groups oisoned patients who a Control Center Ain (PCCASUH), in the

Table No.	Title Page No.		
Table (12):	Student "t" test comparison of blood	96	
	carboxyhemoglubin (COHb) level at 0hour,		
	6hours and 24 hours of admission between both		
	groups of acute carbon monoxide poisoned		
	patients who were admitted to the Poison Control		
	Center Ain Shams University Hospitals		
	(PCCASUH), in the period starting from 1st of		
	November 2015 to 30th of April 2016		
Table (13):	Chi-square test comparison of arterial blood gas	98	
	results between both groups of acute carbon		
	monoxide poisoned patients who were admitted		
	to the Poison Control Center Ain Shams		
	University Hospitals (PCCASUH), in the period		
	starting from 1st of November 2015 to 30th of		
	April 2016		
Table (14):	Number and percentage of positive and negative	100	
	of some cardiac markers (CKMB, troponinI and		
	HFAB) at 0 hour, 6 hour and 24 hour of both		
	groups of acute carbon monoxide poisoned		
	patients who were admitted to the Poison Control		
	Center Ain Shams University Hospitals		
	(PCCASUH), in the period starting from 1st of		
	November 2015 to 30th of April 2016		

Table No.	Title Page No.	
Table (15):	ANOVA test comparison of some cardiac	102
	markers (CKMB, TroponinI and HFABP)at	
	Ohour, 6hour and 24hour between both groups of	
	acute carbon monoxide poisoned patients who	
	were admitted to the Poison Control Center Ain	
	Shams University Hospitals (PCCASUH), in the	
	period starting from 1st of November 2015 to	
	30th of April 2016	
Table (16):	Sensitivity and specificity of human fatty acid	107
	binding protein (HFABP) relative to Troponin I	
	at 0 hour obtained for both groups of acute	
	carbon monoxide poisoned patients who were	
	admitted to the Poison Control Center Ain	
	Shams University Hospitals (PCCASUH), in	
	the period starting from 1st of November 2015	
	to 30th of April 2016	
Table (17):	Sensitivity and specificity of human fatty acid	109
	binding protein (HFABP) relative to TroponinI	
	at 6 hours of admission obtained for both group	
	of acute carbon monoxide poisoned patients	
	who were admitted to the Poison Control	
	Center Ain Shams University Hospitals	
	(PCCASUH), in the period starting from 1st of	
	November 2015 to 30th of April 2016	

Table No.	Title	Page No.
Table (18):	Sensitivity and specificity of humbinding protein (HFABP) relative at 24 hours of admission obtained groups of acute carbon monor patients who were admitted to Control Center Ain Shame Hospitals (PCCASUH), in the patient of November 2015 to 2016	e to TroponinI ined for both xide poisoned o the Poison s University period starting
Table (19):	Chi-square test comparison of investigations (chest X ray are between both groups of a monoxide poisoned patients admitted to the Poison Control Shams University Hospitals (Pothe period starting from 1st of Noto 30th of April 2016	nd brain CT) acute carbon who were ol Center Ain CCASUH), in
Table (20):	Chi-square test comparison of outcome were received between of acute carbon monoxide pois who were admitted to the Po Center Ain Shams University (PCCASUH), in the period startity November 2015 to 30th of April	n both groups soned patients pison Control ity Hospitals ng from 1st of

List of Figures

Fig. No.	Title Page No.	
Fig. (1):	Summary of pathophysiology of carbon	15
	monoxide poisoning	
Fig. (2):	Structure of Fatty acid binding protein 3 (heart	40
Fig. (3):	type) Mean and standard deviation of age of both	76
3 , ,	groups of acute carbon monoxide poisoned	
	patients	
Fig. (4):	Number and percentage of gender, smoking	78
	habits and presence of other diseases of both	
	groups of acute carbon monoxide poisoned	
	patients	
Fig. (5):	Intoxications data (mode and rout of exposure,	81
	delay time and previous managements) of both	
	groups of acute carbon monoxide poisoned	
	patients	
Fig. (6):	Delay time of both groups of acute carbon	81
	monoxide poisoned patients	
Fig. (7):	Mean and standard deviation of recorded vital	84
	signs and Glasgow coma scale (GCS) of both	
	groups of acute carbon monoxide poisoned	
	patients	
Fig. (8):	Number and percentage of each manifestation was developed in both groups of acute carbon monoxide poisoned patients	87