بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٤٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصلبــة تالفــة

بالرسالة صفحات لم ترد بالاصل

MINERALOGY, GEOCHEMISTRY AND ECONOMIC EVALUATION OF SOME KAOLIN OCCURRENCES IN EGYPT

THESIS

SUBMITTED TO THE FACULTY OF SCIENCE, TANTA UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN (SCIENCE) GEOLOGY

By

Gehan Aly Mohammed Aly B.Sc., M. Sc. In Geology from Tanta University, Egypt

TO

GEOLOGY DEPARTMENT

FACULTY OF SCIENCE

TANTA UNIVERSITY

TO THE SPIRIT OF MY DEAR MOTHER

SUPERVISORS

Prof. Dr. Ibrahim A. Salem Professor of Economic Geology,

Tanta University.

Prof. Dr. Ibrahim E. El Aassy Professor of Applied Geology,

Nuclear Materials Authority, Cairo,

Egypt.

Prof. Dr. Bothaina T. Al – Dosuky Assistant Professor of Economic

Geology, Tanta University.

Prof. Dr. Ahmed M. El - Shishtawy Assistant Professor of Sedimentary

Petrology, Tanta University.

Head of Goology-Department

Prof. Dr. M.V. Ghoneiza

CURRICULUM VITAE

Name

: Gehan Aly Mohammed Aly

Date of Birth : 22 / 8 / 1970

Place of Birth: Tanta - El Gharbia Governorate

Social Statues : Married

Nationality

: Egyptian

Qualification

: M. Sc. 1999, Faculty of Science, Tanta University

Assistance Lecturer, Research Sector, Nuclear Materials

Authority, Cairo, Egypt

Head of Geology Department

Prof. Dr. M.F. Ghonein

DECLARATION

I declare that the contents of this thesis have not previously been submitted for a degree at this university or any other universities.

Gehan Aly Mohammed

GehrAli

CONTENT

AKNOWLEDGEMENTS	
ABSTRACT CHAPTER ONE: INTRODUCTION	Page l
1.1. GENERAL STATEMENT	1
1.2. LOCATION OF THE STUDIED AREAS	2
1.3. PREVIOUS WORK	2
1.4. AIM AND SCOPE OF THE STUDY	7
1.5. METHODOLOGY	7
	,
CHAPTER TWO: REVIEW ON THE KAOLIN DEPOSITS	11
2.1. REVIEW ON THE WORLED,S KAOLIN DEPOSITS	11
2.2. GENETIC TYPES OF KAOLIN DEPOSITS	13
2.3. KAOLINITE AS AN INDUSTRIAL MINERALS	15
CHAPTER THREE: CARBONIFEROUS KAOLIN DEPOSITS	17
3.1. GEOLOGY AND LITHOSTRATIGRAPHY OF THE STUDIED	17
CARBONIFEROUS KAOLIN	
3.2. PETROGRAPHY OF CARBONIFEROUS KAOLIN	26
3.3. SCANNING ELECTRON MICROSCOPY (SEM)	33
3.4. PETROGRAPHY OF THE INTERCALATED SANDSTONES	33
3.5. HEAVY MINERALS STUDY	36
3.6.ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY	44
(ESEM)	
3.7. X – RAY DIFFRACTION ANALYSIS	44
3.8. THERMAL ANALYSES	57
3.8.1. Differential Thermal Analysis	58
3.8.2. Thermogravimetric Analysis	63
3.9. GEOCHEMICAL CHARACTERISETICS	65
3.9.1. Major Oxides	65
3.9.2.Trace Elements.	80
3.10. RADIOACTIVITY STUDY	92
3.10.1.Geochemistry of U, Th, Ra and K in the Carboniferous Kaolin	93
3.10.2. α – Tracks Study	96
3.11. CONCLUDING REMARKES	100
	100

B

(CHAPTER FOUR: CRETACEOUS KAOLIN DEPOSITS 4.1. GEOLOGY AND LITHOSTRATIGRAPHY OF THE STUDIED	103 103
	CRETACEOUS KAOLIN	103
	4.2. PETROGRAPHY OF CRETACEOUS KAOLIN	116
	4.3. SCANNING ELECTRON MICROSCOPY(SEM)	127
	4.4. PETROGRAPHY OF THE INTERCALATED SANDSTONES	127
	4.5. HEAVY MINERALS STUDY	130
	4.6.ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY	130
	(ESEM)	137
	4.7. X – RAY DIFFRACTION ANALYSIS	145
	4.8. THERMAL ANALYSES	155
	4.8.1. Differential Thermal Analysis	156
	4.8.2. Thermogravimetric Analysis.	156
	4.9. GEOCHEMICAL CHARACTERISTICS	163
	4.9.1. Major Oxides	163
	4.9.2. Trace Elements.	181
	4.10. RADIOACTIVITY STUDY	195
	4.10.1. Geochemistry of U, Th, Ra and K in the Cretaceous Kaolin	195
	4.10.2. α – Tracks Study	198
	4.11. CONCLUDING REMARKES	204
C	CHAPTER FIVE: UPGRADING AND INDUSTRIAL APPLICATION FOR KAOLIN DEPOSITS	206
	5.1. PREVIOUS WORK	206
	5.2. CHARACTERIZATION OF EL TIH KAOLIN	209
	5.3.THE NATURE OF COLOURING IMPURITIES IN	210
	KAOLIN	
	5.4. EXPERIMENTAL AVAILABLE EQUIPMENT	211
	5.5. LABORATORY SCALE BENIFICIATION TESTS	212
	5.6. OPTIMIZATION OF THE CHEMICAL BLEACHING TESTS FOR	224
	IMPROVING THE BRIGHTNESS OF EL TIH KAOLIN	
	CONCENTRATE	
	5.7. THE LABORATORY BENIFICIATION FLOWSHEET OF EL TIH	236
	VAOLIN	

Ø

CHAPTER SIX: SUMMARY AND CONCLUSIONS	240
6.1. CARBONIFEROUS KAOLIN DEPOSITS	240
6.2. CRETACEOUS KAOLIN DEPOSITS	244
6.3. COMPARISON BETWEEN THE CARBONIFEROUS AND	247
CRETACEOUS KAOLIN DEPOSITS	2 , ,
6.4. ORIGIN OF KAOLIN DEPOSITS	247
6.5. UPGRADING AND INDUSTRIAL APPLICATION OF KAOLIN	254
REFERENCES	256
ARABIC SUMMARY	230

•

ACKNOWLEDGEMENTS

Special thanks go to *Prof. Dr. Ibrahim A. Salem*, Geology Departement, Faculty of Science, Tanta University, for his supervision, great efforts in suggesting the point of study, assistance during field works, providing valuable literatures, his interest and encouragement throughout this work and stimulating discussions as well as reading and comments on the thesis.

I am greatly indebted and grateful to $Prof.\ Dr.\ Ibrahim\ E.\ El-Aassy$, Nuclear Materials Authority, Cairo, for his co – supervision, great efforts in suggesting the point of study, field work, chemical analyses, for providing me with all facilities during the progress of this work and also for critical reading and constructive discussion on the manuscript.

I wish to express my sincere gratitude to *Prof. Dr. Bothaina T. Al - Dosuky* Geology Departement, Faculty of Science, Tanta University, for her co - supervision and offering great help during the microscopic studies, reading and comments on the manuscript.

I am also grateful to *Prof. Dr. Ahmed M. El - Shishtawy*, Geology Departement, Faculty of Science, Tanta University, for his co - supervision in suggesting the point of study assistance during field works, great effort in the critical review of the thesis and his guidance and patience during the progress of the thesis.

Special thanks are also due to *Dr. Mohammed S. Atrees*, Nuclear Materials Authority, Cairo, for his great effort in the part of upgrading of kaolin.

Special thanks also go to *Prof. Dr. M. F. Ghoneim*, Head of Geology Department, Faculty of Science, Tanta University, for providing various departmental facilities during the course of this work.

Thanks are due to *Dr/ Adel Ahmed Foad*, Head of Rocks Studies Department, Nuclear Materials Authority, for offering great help in environmental scanning electron microscope study. I am also grateful to the staff members in Nuclear Materials Authority, Cairo, for their cooperation and cordial relations.

My deep gratitude to my father, sisters, brother, my husband and my children for their continous encourgement during all the stages of this thesis.

ABSTRACT

The present work is concerned with the geology, mineralogy, geochemistry and economic evaluation of the Carboniferous and Cretaceous kaolin in west central Sinai (Egypt). Some selected localities representing the Carboniferous kaolin included: El Esila, El Khaboba and El Shallal. The Cretaceous kaolin deposits were collected from El Tih, Mussaba Salama and El Dehesa areas. The X-ray diffraction analysis, differential thermal analysis and thermogravemitric analysis proved that the deposits in all localities are composed mainly of kaolinite and quartz with subordinate amounts of montmorillonite and illite and small amounts of hematite, goethite and alunite (mainly in El Khaboba).

The heavy minerals study indicated that the Carboniferous and Cretaceous kaolin deposits in the studied areas are composed mainly of opaque minerals represented mainly by hematite in the Carboniferous kaolin and hematite and ilmenite in the Cretaceous kaolin. Non opaque minerals included: amphibole, zircon, biotite, epidot, kyanite, pyroxene, rutile, tourmaline and chlorite (and monazite in Cretaceous kaolin). The identefied heavy grains revealed that the source rocks were mainly igneous (acidic plutonic) rocks with subordinate of basic and metamorphic rocks.

The chemical composition of the studied kaolin indicated that these sediments have high alumina content and very low content of alkalies and relatively high iron and titanium contents. Trace elements content of these sediments (which are rich in Zr, Ga and V but are poor in Co, Ni, Cu, Zn and Rb) favor the sedimentary origin and the fluvial environment of these kaolins,

The radioactivity analyses and alpha track study of the Carboniferous kaolin reveald that radition is present either as adsorbed on clay minerals, captured by iron oxides or included in the carrier minerals as zircon. However, in the Cretaceous kaolin, radiation is related mainly to zircon minerals.

Clues about genesis are all favour the sedimentary origin of the sediments and the influence offluvial processes. Weathering was intense for Carboniferous than for Cretaceous kaolin.