

# The Effect of Two Types of Mini-Implant Attachments on the Supporting Structures of Immediately Loaded Implant Retained Mandibular Single Overdentures.

#### A Thesis

Submitted to Faculty of Dentistry, Ain-Shams University, for Partial Fulfillment of Requirements For Doctor Degree in Removable Prosthodontics.

By

**Ahmed Yehia Abdel Moneim** 

**BDS, 2004** 

M.D.S, 2011

**Cairo University** 

Faculty of Dentistry
Ain Shams University
2017

## **Supervisors**

### Prof. Dr. Ingy Amin Talaat Lebshtien

Professor of Prosthodontics
Faculty of Dentistry

Ain Shams University

## Dr. Ahmed Mohmed Osama Ahmed Shawky

Associate Professor of Prosthodontics

Faculty of Dentistry

Ain Shams University

# بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

(قَالُوا سُبْحَانَكَ لَا عِلْمَ لَنَا اللهِ عَلَّمُ لَنَا عَلَّمْتَنَا اللهِ عَلَّمْ أَنتَ إِلَّا مَا عَلَّمْتَنَا اللهِ إِلَّا مَا عَلَّمْتَنَا اللهِ إِلَّا مَا عَلَّمْتَنَا الْحَلِيمُ الْحَكِيمُ) الْعَلِيمُ الْحَكِيمُ)

صدق الله العظيم

سورة البقرة الآية: ٣٢

#### Acknowledgment

I'm very grateful to **Allah** for without his graces and blessings, this study would not have been possible.

Immeasurable appreciation and deepest gratitude to **Prof. Dr. Ingy Amin Talaat**, Professor of Prosthodontics, Faculty of Dentistry, Ain Shams University, under whose supervision I had the honor to proceed with this study, for her support and words of encouragement and also for giving a long period of time to finish this work.

I would like to express my deepest thanks to **Dr**. **Ahmed Mohamed Osama**, Assistant Professor of Prosthodontics Department, Faculty of Dentistry, for His intensive supervision, kind help, valuable comments and guidance during this work.

I owe special thanks to my colleagues, and staff members of removable Prosthodontics Department, Faculty of Dentistry, MSA University, and also the staff members of prosthodontics department, Ain Shams University for their great support and their great role in completion of this work.

# **List of Contents**

| List of Figures                                                | III |
|----------------------------------------------------------------|-----|
| List of Tables                                                 | V   |
| Introduction                                                   | 1   |
| Review of Literature                                           | 4   |
| Single Denture                                                 | 4   |
| Occlusal plane orientation                                     | 9   |
| Methods of obtaining harmonious balanced occlusion             | 14  |
| Statically equilibrated occlusion                              | 15  |
| Articulator equilibration technique.                           | 15  |
| Articulator generated path                                     | 16  |
| Dynamically equilibrated occlusion (functional generated path) | 17  |
| Single mandibular complete denture                             | 19  |
| Implant overdenture                                            | 22  |
| Mini-implant retained Overdenture                              | 26  |
| Mini –ERA implant attachment system                            | 33  |
| Methods of evaluation                                          | 39  |
| Radiographic Evaluation.                                       | 39  |
| Periapical Radiography                                         | 39  |
| Panoramic Radiography                                          | 40  |
| Computed Tomography                                            | 41  |
| Cone Beam Computed Tomography (CBCT)                           | 42  |
| Computerized Occlusal Analyser (T-Scan III)                    | 45  |
| Aim of the Study                                               | 50  |
| Materials and Methods                                          | 51  |
| Results                                                        | 84  |

| Discussion     |        |
|----------------|--------|
| Summary        | 121    |
| Conclusion     | 123    |
| References     | 124    |
| Arabic Summary | •••••• |

# **List of Figures**

| Figure 1  | Patient with a lower single completely edentulous arch and opposing full                                                                          | 52 |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| rigure i  | dentate arch.                                                                                                                                     | 52 |
| Figure 2  | Primary alginate impression                                                                                                                       | 55 |
| Figure 3  | Maxillary primary impression                                                                                                                      | 55 |
| Figure 4  | Secondary Rubber base impression                                                                                                                  | 58 |
| Figure 5  | Mandiblar single denture try-in.                                                                                                                  | 58 |
| Figure 6  | Delivery of lower single complete denture.                                                                                                        | 59 |
| Figure 7  | The lower complete denture used as a radiographic stent with gutta percha between first and second premolar and the panoramic radiograph with the | 60 |
|           | radiographic stent in place.                                                                                                                      | 00 |
| Figure 8  | Markings on the residual ridge in the proposed positions of implant insertions using surgical stent as a guide.                                   | 63 |
| Figure 9  | The surgical kit, the Mini-ERA and the flapless surgical technique used in implant insertion                                                      | 64 |
| Figure 10 | Four Mini-Era implants placed in the anterior region of the mandible.                                                                             | 64 |
| Figure 11 | Post-operative panoramic radiograph of the four Mini-ERA implants.                                                                                | 65 |
| Figure 12 | The metal housing with the black processing caps and blocking of undercuts using rubber washers.                                                  | 66 |
| Figure 13 | Relief done in the fitting surface of the denture to accommodate the metal housings with the black processing caps during pick-up impression.     | 66 |
| Figure 14 | The metal housing with the black processing caps after pick-up impression with chairside self-cure acrylic resin.                                 | 67 |
| Figure 15 | The metal housing inside the fitting surface of the denture after removal of black processing caps.                                               | 68 |
| Figure 16 | The white retentive caps inside the metal housings.                                                                                               | 69 |
| Figure 17 | Drilling with the 1.1 mm pilot drill to the half of the osteotomy.                                                                                | 71 |
| Figure 18 | The winged thumb wrench used to insert the implant into the osteotomy.                                                                            | 71 |
| Figure 19 | The ratchet wrench used to complete the insertion of the implant into the osteotomy.                                                              | 71 |
| Figure 20 | The Ball &Socket mini-implants inserted in patient's mouth.                                                                                       | 72 |
| Figure 21 | Panoramic radiograph for the ball & socket mini-implants in place.                                                                                | 72 |
| Figure 22 | A sagittal view showing the mesial and distal marginal bone heights measured around the mini-implants.                                            | 75 |
| Figure 23 | A coronal view showing the buccal and lingual marginal bone heights measured around the mini-implants.                                            | 75 |
| Figure 24 | T-Scan III sensor support used to guide the sensor into the handpiece.                                                                            | 78 |
| Figure 25 | The T-Scan III sensor used to detect occlusal parameters                                                                                          | 78 |
| Figure 26 | T-Scan III scanning handle connected to the computer via USB                                                                                      | 79 |
| Figure 27 | T-Scan III software system interface.                                                                                                             | 79 |

| Figure 28 | The proper alignment of the T-Scan III during recording with the sensor support pointer between the two central incisors.                                                                                                                                                                                                                                                                                                                                                                                                                              | 80  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 29 | The record start & stop button that was pressed during recording frames.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80  |
| Figure 30 | The patient while biting on the T-Scan sensor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 81  |
| Figure 31 | The 2-D Movie window which is divided into two equal colored boxes (one green for the left side and one red for the right side) and a square shaped marker with a red and white colors that represents the COF marker (center of force) and path drawn in red and white that represents COFT (center of force trajectory), the COF target is shown in the center as dual elliptical target, which represents the ideal location of the center of force for any maximum intercuspation closure, and acts as a guide with respect to a normal occlusion. | 83  |
| Figure 32 | A 3-D Movie window, Graph window and Graph Zoom window contain color-coded "traces" representing the forces' magnitudes inside each of the colored boxes in the 2-D Movie window.                                                                                                                                                                                                                                                                                                                                                                      | 83  |
| Figure 33 | Bar graph showing mean of alveolar bone height for the studied surfaces for group I and II among follow up period                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88  |
| Figure 34 | Mean differences and standard deviations of alveolar bone height loss for all surfaces of group I (Mini-ERA) during the follow up period                                                                                                                                                                                                                                                                                                                                                                                                               | 91  |
| Figure 35 | Mean differences and standard deviations of alveolar bone height for all surfaces of group II (Ball &socket Mini-implants) during the follow up period.                                                                                                                                                                                                                                                                                                                                                                                                | 94  |
| Figure 36 | Mean differences and standard deviations of alveolar bone height<br>change for all surfaces among both groups during the follow up period.                                                                                                                                                                                                                                                                                                                                                                                                             | 98  |
| Figure 37 | Mean differences and standard deviations of occlusal load for all sides of group I (Mini-ERA) during the follow up period.                                                                                                                                                                                                                                                                                                                                                                                                                             | 101 |
| Figure 38 | Mean differences and standard deviations of occlusal load for all sides in group II(Ball &Socket Mini-Implants)during the follow up period.                                                                                                                                                                                                                                                                                                                                                                                                            | 104 |
| Figure 39 | Mean differences and standard deviations of occlusal load for all sides during the follow up period.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106 |

## **List of Tables**

| Table 1 | Mean and standard deviations of alveolar bone height for the buccal, lingual, mesial and distal aspects for group I (Mini-ERA attachments) and group II (Ball &socket attachments) during the follow up period. | 85  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2 | The mean differences and standard deviations of alveolar bone height change for group I During follow up periods.                                                                                               | 89  |
| Table 3 | Mean differences and standard deviations of alveolar bone<br>height change for all surfaces of group II(Ball &socket Mini-<br>implants)during follow up period.                                                 | 92  |
| Table 4 | Mean differences and standard deviations of alveolar bone height for all surfaces during follow up period.                                                                                                      | 95  |
| Table 5 | Mean and standard deviations of occlusal load for all sides of group I among follow up period                                                                                                                   | 100 |
| Table 6 | Mean differences and standard deviations of occlusal load for all sides of group I during follow up period.                                                                                                     | 100 |
| Table 7 | Mean and standard deviations of occlusal load for all sides of group II during follow up period.                                                                                                                | 103 |
| Table 8 | Mean differences and standard deviations of occlusal load for all sides of group II during follow up period.                                                                                                    | 103 |
| Table 9 | Mean difference, standard deviations and student T test of occlusal load for all sides during the follow up period.                                                                                             | 106 |

#### Introduction

Patients with single complete dentures usually suffer from difficulties in retention and stability especially with the lower denture. Several difficulties are encountered in providing a successful, single complete denture treatment. The firmness with which the natural teeth are retained in bone and the magnitude of force exerted by these teeth during function are not usually tolerated either by the single denture or the supporting residual ridge. This results in problems in the retention and stability of the denture and an accelerated rate of residual ridge resorption. Forces exerted by the opposing natural teeth also result in frequent single denture fracture.

The occlusal form and inclination of the remaining natural teeth and the occlusal plane dictate the occlusal form of the denture, and the forces to which the single denture is subjected.

Implant supported and retained overdenture is a promising treatment option for patients with mandibular single complete denture. Implant supported overdenture is attempted to overcome the problems of retention, support and stability of single dentures by the utilization of strategically placed implants. Additionally the chewing efficiency is improved due to the enhanced stability and retention.

Recently successful oral rehabilitation with mini implants in more definitive treatments has been reported for partially and completely edentulous patients. In comparison with conventional diameter implants, Mini Dental Implants (MDIs) are cost effective, have fewer complications during flapless implant placement and can be used in edentulous arches with minimal remaining bone in a faciolingual dimension to avoid bone graft. MDIs also have the advantages of single stage conventional diameter implants including; short healing time, minimal postoperative discomfort, and immediate restoration of mastication and esthetics for patients during the healing period.

Despite of the advantages provided by mini implant, decreasing the diameter increases the risk for implant fracture because of reduced mechanical stability and the risk of over loading. In order to compensate for reduced MDIs diameter and surface area, it is recommended to increase the number of implants with maximum length (according to the available ridge height) to improve initial stability instead of the conventionally used two implants to support and retain mandibular overdentures.

O-rings are ball and socket attachments used with MDIs, they are used as anchors to retain and stabilize lower overdentures. The attachment consists of a ball connected to mini-implant and a metal housing incorporated into the base of the denture. Arubber O-ring that houses in the metal housings is used to seal and lock the pieces into place

Mini implant using a smaller version with ERA attachment was introduced. This attachment overcomes the space problem because all of its bulk is housed within the root portion of the abutment. Lateral forces are not entirely transmitted to the abutment because the male part can bend during slight movement of the denture. Low-profile implant ERA, overdenture attachment was used to reduce the abutment restoration height on implants.

The ERA males are made of nylon and are color coded by the manufacturer according to the amount of retention. The black male is used for processing in the overdenture. It creates an undercut maleretention socket in the denture acrylic resin. It also allows for the creation of 0.4 mm of resiliency in the final restoration. The primary retention of ERA comes from the friction between the metal female and nylon male on the inner side of the ring; however, the wall outside the ring may play a role on the retention as well. The ERA males act as a hybrid ball-and-socket attachment, allowing vertical resiliency and universal stress relief for use when a resilient prosthesis is indicated.

Over the years, several methods has been employed to diagnosis, evaluate, and balance occlusal forces, however none of them accurately detect and assess simultaneous contact, and measure both the biting time and force. The computerized occlusal analysis system T-Scan introduced in 1987 helps in measuring occlusal biting forces, and aid in obtaining consistent and useful occlusal data for evaluating occlusal contacts for removable prostheses.

The ultimate choice of attachment type should be based on clinical performance of the attachments regarding the functional occlusal stability, loads onto the implants and surrounding tissues; the patients' satisfaction with treatment, the technical problems and maintenance service as well as attachment costs. Although, Long term studies have been published evaluating the effect of Mini- dental implant on the peri-implant bone loss, however there is rareness of studies on the effect of mini-implant attachment on peri-implant bone loss and functional occlusal stability in single denture.

#### **Review of Literature**

### **Single Dentures**

Single denture is "a complete denture that occludes against some or all of the natural teeth, a fixed restoration or a previously constructed removable partial denture or a complete denture." (1)

The prognosis of maxillary single denture is usually more favorable than mandibular single denture. This is probably due to the larger bearing area of the maxillary edentulous arch which is 22.96cm<sup>2</sup> average surface area compared to the mandibular edentulous one which is 12,25 cm<sup>2</sup> average surface area , the possibility of more positive support, stability and retention, and the ease of developing tongue habits to aid in supporting the denture.<sup>(2,3)</sup>

An uneven alignment of natural teeth is encountered in practically every person exhibiting a single edentulous arch. This is usually due to the premature loss of teeth together with delay in obtaining replacements. Loss of teeth may thus lead to overeruption and extrusion of the opposing teeth, drifting, tipping and tilting of adjacent teeth causing irregularities and malposition of the occlusal plane. (3)

Tipping is generally associated with the interruption of a continuous dental arch, while extrusion is associated with malrelationship with antagonists. This causes decrease or loss of function and loss of interarch space leading to excessive biting forces with troubles in the temporomandibular joint. Occlusion on a tipped or an extruded tooth will often result in disruption of occlusal harmony. It may lead to locking of occlusion and the production of forces that tend to unseat dentures. Masticatory forces are often misdirected as a result of these changes. Thus occlusal interferences must be detected and corrected whenever possible. In addition a difference usually exists between the sizes of a dentulous maxillary or mandibular arches opposed by an edentulous arch. (4)

**Patients** showing an occlusal scheme that is excessively worn were reported to have strong masticatory forces in lateral excursions. A single denture for a patient with worn dentition is the most difficult to construct inspite of less lateral forces applied, but due to the unequal size of the dentulous arch in relation to the edentulous arch due to bone Resorption occurs labially and buccally resorption. maxillary edentulous arches leading to setting up of the teeth outside the crest of the ridge causing leverage and instability of the maxillary denture. Also, the pattern of bone resorption of mandibular edentulous arch is lingual which may lead to setting up of the artificial teeth inside the crest of the ridge leading to instability of the lower denture due to encroaching on the tongue space. The cusps of relatively unworn dentition far denture have more favorable prognosis, although presenting problems of steep cusps and the associated resolution of forces that tend to dislodge the denture. (5)

It was reported that changes occur after maxillary teeth extraction and result in a comparatively smaller maxilla when compared with the dentulous state. This results in a horizontal discrepancy between the arches anteriorly and posteriorly and makes it difficult to direct forces to the maxillary denture-bearing surface. This is because support is far away from the denture tooth position. The best solution for correcting this variation posteriorly is to place the teeth in a reverse horizontal overlap (cross bite arrangement). However, for the anterior discrepancy, it is not possible to achieve such correction due to esthetic reasons affecting the support of upper lip. <sup>(6)</sup>

A narrow maxilla opposed by a broad mandible usually presents complication to the prognosis of complete denture as a result of unfavorably directed masticatory forces. When cross bite of the natural teeth exists, extreme care must be taken not to place any portion of the artificial teeth outside the confines of the denture. Improper tooth placement results in a denture that tends to be unseated. When any doubt exists about proper tooth position it is better to articulate teeth in a cross bite relationship. <sup>(6)</sup>

The ability of the patient to generate heavy occlusal forces, due to the existence of opposing natural teeth leads to midline fracture of denture base. The unsuitability of the denture foundation tissues to resist high occlusal forces from the opposing natural teeth results in an advanced bone loss of the residual alveolar ridges. Flexible dentures are a promising