GENETIC ENGINEERING APPROACHES TO IMPROVE ABIOTIC STRESS RESISTANCE IN EGYPTIAN WHEAT

BY AHMED MOHAMMED MOHAMMED RAMADAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Agricultural Science (Genetics)

Department of Genetics
Faculty of Agriculture -Ain Sham University

GENETIC ENGINEERING APPROACHES TO IMPROVE ABIOTIC STRESS RESISTANCE IN EGYPTIAN WHEAT

BY

AHMED MOHAMMED MOHAMMED RAMADAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 1999

Under the supervision of:

Prof. Dr. Ahmed Bahieldin Mohamed

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University (Principal supervisor).

Prof. Dr. Fotouh M. El-Domyati

Prof. of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University

Dr. Hesham Taha Mahfouz

Senior researcher of Genetics, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC)

Approval sheet

GENETIC ENGINEERING APPROACHES TO IMPROVE ABIOTIC STRESS RESISTANCE IN EGYPTIAN WHEAT

BY

AHMED MOHAMMED MOHAMMED RAMADAN

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 1999

This thesis for M. Sc. degree has been approved by:

The mode to me of degree has been approved by:
Prof. Dr. Naglaa Abd El Moneim Abdallah Prof. of Genetics, Faculty of Agriculture, Cairo University
Prof. Dr. Fatthy Mohamed Abdel-Tawab Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University
Prof. Dr. Fotouh Mohamed El-Domyati Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Prof. Dr. Ahmed Bahieldin Mohamed Prof. of Genetics, Faculty of Agriculture, Ain Shams University
Date of Examination / / 2005

ACKNOWLEDGMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful

I wish to express my deep thanks and gratitude to Prof. Dr. **Ahmed Bahieldin**, Professor of Molecular Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University for his supervision, guidance, and every possible help he kindly offered during the course of this investigation.

I also like to express my deepest gratitude and sincere appreciation to Prof. Dr. **F. M. El-Domyati**, Professor of Molecular Genetics, Faculty of Agriculture, Ain Shams University for his continuous supervision, kind help and valuable comments through the course of this study.

I would like to thank Dr. **Hesham Mahfouz**, for his practical help and continuous encouragement throughout the course of this study.

I would like to express my most sincere gratitude to Prof. Dr. **Hanaiya El-Itriby**, Director of the Agricultural Genetic Engineering Research Institute for her kind support and encouragement.

I would like to express my deep thanks to. Dr. **Hala Eissa**, Senior Scientist at Agricultural Genetic Engineering Research Institute and Dr. **Osama Saleh**, Senior Scientist at National Center of Radiation Research and Technology, Egypt, For thier energetic guidance and conclusive instructions and practical help throughout the course of this study.

I am very grateful to my colleagues at the ESL, Sherif Edris, Hoda El-Garhi, Sameh El-Sayed, Omnia Osama, Sara Khairy and Adel Abdurrady for their continuous encouragement and help in the preparation of this work. Also, I would like to extend my thanks to all the AGERI stuff, who have helped me. I must especially acknowledge Ahmed Shokry and Walid Moneer for their continuous support and help.

Also, I would like to thank all the stuff at Department of Genetics Faculty of Agriculture, Ain Shams University especially Molecular

Cytogenetic Lab, I must especially acknowledge **Prof. Dr. El-Sayed H. Hassanien,** Professor of Genetics, Dept. of Genetics, Fac. of Agric.,Ain Shams Univ. for their continuous encouragement and help.

Finally, I would like to thank my family, my father, mother and my brothers for their encouragement and support during this work.

ABSTRACT

Ahmed Mohammed Mohammed Ramadan, Genetic engineering approaches to improve abiotic stress resistance in Egyptian wheat Unpublished master of Science Thesis, Genetics Dept., Fac. Agric., Ain Shams Univ., 2005.

The bacterial gene, mtlD, that encodes mannitol-1-phosphate dehydrogenase, for mannitol accumulation was introduced into Egyptian bread wheat cv. Giza 163. The transformation was carried out by particle bombardment of immature embryos using the biolistic device. A plant expression vector was constructed in which *mtlD* gene was driven by the ubi promoter, and the selectable marker bar encoding the phosphinothricin acetyl transferase gene for herbicide resistance was driven by the CaMV 35S promoter. Two To plants were regenerated and submitted to preliminary evaluation by leaf painting with the herbicide basta (1 g/L) and showed no symptoms of necrosis. The two putatively transgenic plants were submitted to PCR and Southern analysis, in which the latter showed that one copy of the mtlD gene has been incorporated. Subsequent molecular testing was carried out to determine gene expression in transformed T₁ wheat plants using northern analysis. Salt stress experiment in sand culture indicated that one of the two transgenic events could tolerate intermediate concentration of salt (8000 ppm 3 NaCl/1 CaCl2). Under salt stress, flag leaf area in transgenic plants was reduced by 60%, plant height by 35%, peduncle length by 24%, 1000 grain weight by 26%, biological yield by 74%, and grain yield by 40%. In wild type, flag leaf area was reduced by 53%, plant height by 40%, peduncle length by 46%, 1000-grain weight by 58%, biological yield by 71%, and grain yield by 66%. Finally, we concluded that this approach can be used in improving abiotic stress tolerance in wheat

Key words: Wheat, immature embryos, transformation, biolistic bombardment, drought tolerance, Mannitol, leaf-painting, bialaphos, PCR, genomic Southern, Northern.

إستخدام طرق الهندسة الوراثية لتحسين المقاومة للضغوط غير الحيوية في القمح المصرى

رسالة مقدمة من أحمد محمد رمضان أحمد محمد محمد رمضان بكالوريوس علوم زراعية (وراثة) ، جامعة عين شمس، 1999.

للحصول على درجة الماجستير في العلوم الزراعية (ورائسة)

قسم الوراثة كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة إستخدام طرق الهندسة الوراثية لتحسين المقاومة للضغوط غير الحيوية في القمح المصرى

رسالة مقدمة من

أحمد محمد رمضان

بكالوريوس علوم زراعية (وراثة) ، جامعة عين شمس، 1999.

للحصول على درجة الماجستير فى العلوم الزراعية (ورائسة)

	وقد تمت مناقشة الرسالة والموافقة عليها
اللجنة	
	أ.د.
	ا.د.
	ا.د.
	تاريخ المناقشة:

لجنة الإشراف

إستخدام طرق الهندسة الوراثية لتحسين المقاومة للضغوط غير الحيوية في القمح المصرى

رسالة مقدمة من

أحمد محمد محمد رمضان

بكالوريوس علوم زراعية (وراثة) ، جامعة عين شمس، 1999.

للحصول على درجة الماجستير في العلوم الزراعية (وراثة)

تحت إشراف أ.د./ أحمد بهى الدين أستاذ الوراثة الجزينية ـ قسم الوراثة كلية الزراعة ـ جامعة عين شمس

أد./ فتوح محمد عبد المجيد الدمياطى أستاذ الوراثة الجزئية - قسم الوراثة كلية الزراعة - جامعة عين شمس

أ.د./ هشام أحمد طه محفوظ
 باحث أول – معهد بحوث الهندسة الوراثية الزراعية
 مركز البحوث الزراعية

جامعة عين شمس كلية الزراعة

رسالة ماجستير

اسم الطالب: أحمد محمد رمضان

عنوان الرسالة: إستخدام طرق الهندسة الوراثية لتحسين المقاومة للضغوط غير

الحيوية في القمح المصرى

لجنة الإشراف: أ.د./ أحمد بهى الدين أستاذ الوراثة الجزينية - قسم الوراثة كلية الزراعة - جامعة عين شمس (المشرف الرئيسي)

> أ.د./ فتوح محمد عبد المجيد الدمياطى أستاذ الوراثة الجزنية - قسم الوراثة كلية الزراعة - جامعة عين شمس

أ.د./ هشام أحمد طه محفوظ باحث أول – معهد بحوث الهندسة الوراثية الزراعية - مركز البحوث الزراعية

تاريخ البحث: / 2005

ختم الإجازة أجيزت الرسالة بتاريخ : / /
موافقة مجلس الكلية موافقة مجلس الجامعة / /

TABLE OF CONTENTS

I. INTRODUCTION ERROR! BOOKMARK NOT DEFINED.
II. REVIEW OF LITERATURE ERROR! BOOKMARK NOT DEFINED.
1. Improvement of abiotic stress tolerance through genetic
transformation Error! Bookmark not defined.
1.1. Transfer of Mannitol-accumulating gene (mtlD) using
genetic engineering approaches Error! Bookmark not defined.
1.2. Other genes for abiotic stress tolerance Error! Bookmark not defined.
2. Wheat transformation Error! Bookmark not defined.
2.1. Establishment of transformation protocols Error! Bookmark not
defined.
III. MATERIALS AND METHODSERROR! BOOKMARK NOT DEFINED.
1. Materials Error! Bookmark not defined.
1.1. Plant material Error! Bookmark not defined.
1.2. Plant expression vector Error! Bookmark not defined.
2. Methods Error! Bookmark not defined.
2.1. Gene construction Error! Bookmark not defined.
2.1.1. Enzymatic digestion Error! Bookmark not defined.
2.1.2. Fill up of sticky ends Error! Bookmark not defined.
2.1.3. Ligation Error! Bookmark not defined.
2.1.4. Introduction of plasmid DNA into <i>E. coli</i> competent
cells Error! Bookmark not defined.
2.1.4.1. Preparation of competent cells Error! Bookmark not
defined.
2.1.4.2. Transformation of competent cells with plasmid DNA
Error! Bookmark not defined.
2.1.5. Plasmid isolation and confirmation of construction Error! Bookmark not defined
2.1.5.1. Minipreparation of the plasmidError! Bookmark not
defined.
2.1.5.2. Maxi preparation of the plasmid construct Error!
Bookmark not defined. 2.1.5.3 Plasmid confirmationError! Bookmark not defined.
2.1.3.3 Flashild CommittationEffor: Bookmark not defined.

- 2.1.5.4. Determination of DNA concentration Error! Bookmark not defined.
- 2.1.5.5. Agarose gel electrophoresis**Error! Bookmark not** defined.
- 2.2. Wheat transformation and regeneration Error! Bookmark not defined.
 - 2.2.1. Surface sterilization of seeds Error! Bookmark not defined.
 - 2.2.2. Excision of immature embryos and callus Initiation Error! Bookmark not defined.
 - 2.2.3. Osmotic treatment Error! Bookmark not defined.
 - 2.2.4. Bombardment of immature embryo-derived callus Error! Bookmark not defined.
 - 2.2.4.1. Preparation of microcarriers for bombardment .. **Error! Bookmark not defined.**
 - 2.2.4.2. The gun conditions...... Error! Bookmark not defined.
 - 2.2.4.3. Operation of the biolistic gunError! Bookmark not defined.
 - 2.2.4.4. Transformation experiments Error! Bookmark not defined.
 - 2.2.5. Subculture of immature embryo-derived callus Error! Bookmark not defined.
 - 2.2.6. Production of regenerated putatively-transgenic explants. Error! Bookmark not defined.
 - 2.2.7. Acclimatization procedure Error! Bookmark not defined.
- 2.3. Evaluation of putative transgenic plants Error! Bookmark not defined.
 - 2.3.1. Leaf painting with the herbicide basta Error! Bookmark not defined.
 - 2.3.2. Molecular analysis Error! Bookmark not defined.
 - 2.3.2.1. Molecular analysis on the structural level...... **Error! Bookmark not defined.**
 - 2.3.2.2. Molecular analysis at the functional level...... Error! Bookmark not defined.
- 2.4. Greenhouse experiment Error! Bookmark not defined.

IV. RESULTS AND DISCUSSIONERROR! BOOKMARK NOT DEFINED.

- 1. Construction of plant expression vector. Error! Bookmark not defined.
- 2. Wheat tissue culture and transformation Error! Bookmark not defined.
 - 2.1. Callus induction..... Error! Bookmark not defined.
 - 2.2. Regeneration..... Error! Bookmark not defined.

- 2.3. Callus rooting and plantlet acclimatization Error! Bookmark not defined.
- 3. Evaluation of putative transgenic plants Error! Bookmark not defined.
 - 2.3.1. Leaf painting with the herbicide basta Error! Bookmark not defined.
 - 3.2. Molecular analysis of transgene(s)Error! Bookmark not defined.
 - 3.2.1. On the structural level Error! Bookmark not defined.
 - 3.2.2. On the expression level Error! Bookmark not defined.
 - 3.3. Evaluation of transgenic plants under salt stressError! Bookmark not defined.

V. SUMMARY..... ERROR! BOOKMARK NOT DEFINED.

VI. REFERENCES..... ERROR! BOOKMARK NOT DEFINED.

ARABIC SUMMARY

List of abbreviations

AP1 Proteinase inhibitor

Bip Endoplasmic reticulum response binding protein

Camv Cauliflower mosaic virus CMO Choline mono oxygenase

DEX Dexmethasone DON Deoxynivalenol

DRE Dehydration response element

EPSPs 5-enolpyruvylshikimate-3-phosphate synthase

Fad7 Omega-3-fatty acid desaturase

FHB Fusarium head blight

G163 Giza163

GPD Glycerol-3-phosphate dehydrogenase

GUS gene β- glucourindase

HMW High molecular weight glutenin hpt Hygromycin phosphor transferase

HVA1 One of a late embryogenesis abundant (LEA) protein

genes

KP4 Antifungal protein from *Ustilago maydis* infection virus

LMW Low molecular weight glutenin

MAPKKK Mitogene activated protein kinase kinase kinase

MS media Murashige and skoog media

mtlD Mannitol-1-phosphate dehydrogenase

NMR Nuclear magnetic resonance
nptII Kanamycin resistance gene
osCDPK Calcium-dependent protein kinase

OSML Osmotin-like protein genes otsA and otsB Trehalose biosynthetic genes

PPT Phosphinothircin

PR Pathogenesis related protein

P-ubi Ubiquitin promoter

RM1 Cytokinin containing media

SA Salicylic acid

SacB Fructan accumulation gene SOD Super oxide dismutase WSMV Wheat streak mosaic virus

WUE Water use efficiency

LIST OF TABLES

No.		Page
1.	Codon alignment of the bacterial mtlD gene with selected	
	wheat genes as well as the bacterial bar gene (as a refree)	65
2.	Yield and yield attributes of G163 and transgenic plant 79	
	under different environmental conditions.	84