PHYTOREMEDIATION POTENTIAL OF BRASSICA JUNCEA L. FOR HEAVY METALS POLLUTED SOIL IN EL – GABAL EL – ASFAR REGION.

By ALI SAID MOHAMED HASSEN ABO AL – NAGAA B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2006.

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Plant Physiology)

Department of Agricultural Botany Faculty of Agricultural Ain Shams University

PHYTOREMEDIATION POTENTIAL OF BRASSICA JUNCEA L. FOR HEAVY METALS POLLUTED SOIL IN EL – GABAL EL – ASFAR REGION.

By

ALI SAID MOHAMED HASSEN ABO AL – NAGAA

B. Sc. Agric. SC. (Horticulture), Ain Shams University, 2006.

Under the supervision of:

Dr. Moustafa Ali Amer

Prof. Emeritus of Plant Physiology, Agricultural Botany Department, Faculty of Agriculture, Ain Shams University. (Principal Supervisor)

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to Allah, the mose beneficent and merciful

The author wishes to express his gratitude and indebtedness to **Dr.**Moustafa Ali Amer, Professor of Plant Physiology, Agric. Bot. Dept.,

Faculty of Agric., Ain Shams Univ., main supervisor, who initially suggested the problem specially during the experimental course of study and during the preparation of this thesis and continuous encouragement, words are not enough to express how grateful, Aim to him.

I wish to extend my appreciation and gratitude to **Dr. Sayed Hussin**, **Lecturer of Plant Physiology**, **Agric. Bot. Dept.**, **Faculty of Agric.**, **Ain Shams Univ.** for his constant guidance and helping me to fully achieve this work and thank him for this effort to get out of this work in this way. Thanks and appreciation to **Dr. Hatem Ashour**, **Lecturer of Plant Physiology**, **Agric. Bot. Dept.**, **Faculty of Agric.**, **Ain Shams Univ.** to provide a helping hand and help me.

I express my thanks and gratitude to **Dr. Ahmed Abdel-Wahab**, **Associate Professor of microbiology, Agric. Micro. Dept., Faculty of Agric., Ain Shams Univ.** to help me fully achieve this work.

Tribute to **Dr. Taha Abdel-Fattah Khudair, Associate Professor of microbiology, Agric. Micro. Dept., Faculty of Agric., Ain Shams Univ** for helping me in the scientific and applied wastewater treatment used in the experiment and I call on him for mercy and forgiveness.

Thanks are also extended to all members of Agric. Botany Dept. for their kindness and help that made such work possible.

The supervisor odd his own feelings towards **Dr. Sayed Hussin** for his sincere efferot offered during preparing the final steps needed for this work and **Dr. Hatem Ashour** for his assistance.

ABSTRACT

Ali Said Mohamed Abo Al –Nagaa: Phytoremediation Potential of *Brassica Juncea* L. for Heavy Metals Polluted Soil in El–Gabal El–Asfar Region. Unpublished M.Sc. Thesis, Department of Agricultural Botany, Faculty of Agriculture, University of Ain Shams, 2012.

The results of this study revealed that spraying Indian mustard plants with humic aicd irrigated with treated water in presence of magnetic iron achieved an increase in root length, plant height and number of leaves to be significantly higher than EDTA treatment without magnetic iron. It also activated dry matter production for root and shoot. Furthermore, such behavior reflected itself on yield production not only above EDTA without magnetic iron, but also in the presence of magnetic iron to be significantly higher in terms of number of pods, their weights and weight of 100 seeds. At the same time, increased oil percentage to surpass that attained by EDTA treatment without magnetic iron Although less than that of EDTA treated with MI yet, higher than that attained with humic in presence of magnetic iron.

The repeation of cultivation with the same treatment in presence of magnetic iron induced high total amounts of N, P and K for shoot against the 1st season. Also, it increased shoot and root micronutrients. Whereas, it differed for heavy metals and Na. These results are in accordance with the soil analysis of these treatments. Since N, P and K as well micronutrients in presence of magnetic iron decreased with the repeation of cultivation of Indian mustard plants, meanwhile heavy metals and Na still higher in the soil. So, it may be discussed on the role of magnetic iron in preventing the uptake of heavy metals as well Na by mustard plants. Thus, it is obvious the beneficial effect of magnetic iron in preventing the deleterious effect of heavy metals and Na to induce healthy seeds. **Keywords:** *Brassica juncea*, Phytoremediation, Heavy metals, EDTA, Sulfur, Humic acid, citric acid, Spermidine and Magnetic iron.

CONTENTS

No.		Page
	LIST OF TABLES	IV
	LIST OF FIGURES	IX
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	4
2.1	Ethylene diamine tetra acetic acid (EDTA)	4
2.2	Sulfur	9
2.3	Humic acid	11
2.4	Spermidine	12
2.5	Citric acid	13
2.6	Magnetic iron	16
2.7	Use of microorganisms for heavy metals	
	biosorption	18
3	MATERIALS AND METHODS	23
3.1	First experiment	23
3.2	Second experiment	28
3.3	Chemical determinations of Indian mustard plant	32
3.3.1	Total nitrogen	32
3.3.2	Total Phosphorus	33
3.3.3	Total potassium	33
3.3.4	Micronutrients, Heavy metals and sodium	33
3.3.5	Determination of oil in Indian mustard seeds	33
3.4	Soil determinations	33
4	RESULTS	35
4.1	First experiment	35
4.1.1	Growth characters	35
4.1.1.1	Root length	35
4.1.1.2	Plant height	35
4.1.1.3	Number of leaves	35

4.1.2	Fresh and Dry weights
4.1.2.1	Root
4.1.2.2	Shoot
4.1.3	Yield (weight of pods and 100 seeds)
4.1.4	Oil percentage
4.1.5	Chemical constituents
4.1.5.1	Root
4.1.5.1.1	Macronutrients (N, P and K)
4.1.5.1.2	Micronutrients (Fe, Cu, Mn and Zn), Heavy
	metals (Pb and Cd) and Na
4.1.5.2	Shoot system
4.1.5.2.1	Macronutrients
4.1.5.2.1	Micronutrients (Fe, Cu, Mn and Zn), Heavy
	metals (Pb and Cd) and Na
4.1.5.3	Seeds
4.1.5.3.1	Macronutrients
4.1.5.3.2	Micronutrients (Fe, Cu, Mn and Zn), heavy
	metals (Pb and Cd) and Na
4.2	Second experiment
4.2.1	Growth characters
4.2.1.1	Root length:
4.2.1.2	Plant height
4.2.1.3	Number of leaves
4.2.2	Fresh and dry weights
4.2.2.1	Root
4.2.2.2	Shoot
4.2.3	Yield (number of pods, weight of pods and
	weight of 100 seeds)
4.2.4	Oil percentage:
4.2.5	Chemical constituents
4.2.5.1	Root system
4.2.5.1.1	Macronutrients (N, P and K)

Micronutrients (Fe, Cu, Mn and Zn), Heavy
metals (Pb and Cd) and Na
Shoot system
Macronutrients (N, P and K)
Micronutrients (Fe, Cu, Mn and Zn), Heavy
metals (Pb and Cd) and Na
Seeds
Macronutrients (N, P and K)
Micronutrients (Fe, Cu, Mn and Zn), Heavy
metals (Pb and Cd) and Na
Changes in soil content after cultivation with
Indian mustard during two seasons
DISCUSSION 105
First experiment 105
Second experiment
SUMMARY 113
REFERENCES 119
APPENDIX
ARABIC SUMMARY

LIST OF TABLES

No.		Pages
1	Physical properties of El Gabal El Asfar Soil (First	
	experiment)	24
2	Chemical properties of El Gabal El Asfar Soil (First	
	experiment)	24
3	Chemical properties of untreated water of El Gabal EL	
	Asfar (first experiment).	25
4	Chemical properties of treated water of El Gabal El	
	Asfar (first experiment)	26
5	Physical properties of El Gabal El Asfar Soil. (Second	
	experiment)	29
6	Chemical properties of El Gabal El Asfar Soil (Second	
	experiment)	29
7	Chemical properties of untreated water of El Gabal El	
	Asfar (Second experiment)	30
8	Chemical properties of treated water of El Gabal El	
	Asfar water (second experiment)	31
9	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on root	
	length, plant height and number of leaves per plant of	
	Indian mustard plant during 2007 season	36
10	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on fresh and	
	dry weights of the root and shoot of Indian mustard	
	plant during 2007 season	38
11	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on weight of	
	pods/plant, weight of 100 seeds and oil percentage of	

	the seeds of Indian mustard plants during 2007	
	season	41
12	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on nitrogen	
	(N), phosphorus (P) and potassium (K) percentages in	
	the root of Indian mustard plants during 2007	
	season	42
13	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on iron (Fe),	
	copper (Cu), manganese (Mn), zinc (Zn), lead (Pb),	
	cadmium (Cd) concentrations and sodium (Na)	
	percentage in the root of Indian mustard plants during	
	2007 season	45
14	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on nitrogen	
	(N), phosphorus (P) and potassium (K) percentages in	
	the shoot of Indian mustard plants during 2007	40
1.5	season	49
15	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and humic acid) and magnetic iron application on iron (Fe),	
	copper (Cu), manganese (Mn), zinc (Zn), lead (Pb),	
	cadmium (Cd) concentrations and sodium (Na)	
	percentage in the shoot of Indian mustard plants during	
	2007 season	51
16	Effect of soil applications (EDTA, sulfur and humic	01
- •	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on nitrogen	
	(N), phosphorus (P) and potassium (K) percentages in	
	· / · I · · / · I	

	the seeds of Indian mustard plants during 2007	
	season	55
17	Effect of soil applications (EDTA, sulfur and humic	
	acid), foliar applications (spermidine, citric acid and	
	humic acid) and magnetic iron application on iron (Fe),	
	copper (Cu), manganese (Mn), zinc (Zn), lead (Pb),	
	cadmium (Cd) concentration (PPM) and sodium (Na)	
	percentage in the seeds of Indian mustard plants during	
	2007 season	56
18	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on root length, plant height and number	
	of leaves of Indian mustard plants (second	
	experiment)	59
19	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on fresh and dry weights of the root of	
	Indian mustard plants (second experiment)	62
20	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on fresh and dry weights of the shoot of	
	Indian mustard plants (Second experiment)	64
21	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on the number of pods, weight of pods	
	per plant and weight of 100 seeds of the Indian mustard	
	(Second experiment)	67
22	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on nitrogen (N), phosphorus (P) and	
	potassium (K) percentages in the root of Indian mustard	
	(Second experiment)	69

23	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on iron (Fe), copper (Cu), manganese	
	(Mn) and zinc (Zn) concentration (PPM) in the root of	
	Indian mustard (Second experiment)	75
24	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on lead (Pb) and cadmium (Cd)	
	concentrations (ppm) in the root of Indian mustard	
	plants (second experiment)	80
25	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on sodium (Na) percentages in root	
	Indian mustard plants (second experiment)	83
26	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on nitrogen (N), phosphorus (P) and	
	potassium (K) percentages in the shoot of Indian	
	mustard plants (second experiment)	86
27	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on iron (Fe), copper (Cu), manganese	
	(Mn) and zinc (Zn) concentrations (ppm) in the shoot of	
	Indian mustard plants (second experiment)	89
28	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on lead (Pb) and cadmium (Cd)	
	concentrations (ppm) in the shoot of Indian mustard	
	plants (second experiment)	90
29	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on sodium (Na) percentage in the shoot	

	of Indian mustard plants (second experiment)	92
30	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on nitrogen (N), phosphorus (P) and	
	potassium (K) percentages in the seeds of Indian	
	mustard plants (second experiment)	93
31	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on iron (Fe), copper (Cu), manganese	
	(Mn) and zinc (Zn) concentrations (ppm) in the seeds of	
	Indian mustard plants (Second experiment)	94
32	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on lead (Pb) and cadmium (Cd)	
	concentrations (ppm) in the seeds of Indian mustard	
	plants (second experiment)	96
33	Effect of soil applications (EDTA, sulfur and humic	
	acid), combined with foliar humic application and	
	magnetic iron on sodium (Na) percentage in the seeds	
	of Indian mustard plants (second experiment)	97
34	Relative changes in soil content after the cultivation of	
	Indian mustard plant treated with different applications	
	during two seasons	98
35	The elevation percentage of soil N, P and K at the end	
	of the 1 st season (2008) relative to the 2 nd one	
	(2009)	102
36	The elevation percentage of soil Fe, Cu, Mn and Zn at	
	the end of the 1 st season (2008) relative to the 2 nd one	
	(2009)	103
37	The elevation percentage of soil Pb, Cd and Na at the	
	end of the 1 st season (2008) relative to the 2 nd one	
	(2009)	104

LIST OF FIGURES

NO.		Pages
1	Total macronutrient (N, P and K) amount in the roots of	
	Indian mustard plants 50 days after sowing with or	
	without magnetic iron during the 1 st experiment	43
2	Total micronutrient (Fe, Cu, Mn and Zn) amount in the	
	roots of Indian mustard plants 50 days after sowing with	
	or without magnetic iron during the 1 st experiment	46
3	Total amount of Pb, Cd and Na in the roots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the 1 st experiment	47
4	Total macronutrient (N, P and K) amounts in the shoot of	
	Indian mustard plants 50 days after sowing with or	
	without magnetic iron during the 1st experiment	50
5	Total micronutrient (Fe, Cu, Mn and Zn) amounts in the	
	shoot of Indian mustard plants 50 days after sowing with	
	or without magnetic iron during the 1st experiment	52
6	Total amounts of Pb, Cd and Na in the shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the 1 st experiment	53
7	Total N amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	71
8	Total P amounts in the roots and shoots of Indian mustard	
	plants 50 days after sowing with or without magnetic iron	
	during the first (left) and second (right) seasons of the 2 nd	
	experiment	72
9	Total K amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	

	seasons of the 2 nd experiment	73
10	Total Fe amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	76
11	Total Cu amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	77
12	Total Mn amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	78
13	Total Zn amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	79
14	Total Pb amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	81
15	Total Cd amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	82
16	Total Na amounts in the roots and shoots of Indian	
	mustard plants 50 days after sowing with or without	
	magnetic iron during the first (left) and second (right)	
	seasons of the 2 nd experiment	84

INTRODUCTION

Water scarcity is projected to become an important determinant for agricultural production and food security worldwide, particularly in arid and semi-arid regions, where one-sixth of the world population lives (World Bank, 1999; UNDP, 2007). The upcoming challenge of global climate changes are further adding to the deteriorating situation of water shortage (FAO and IFAD, 2006; Geissler *et al.*, 2010). As a consequence of increasing competition over limited water resources, agriculture (dominant user, accounting for about 80% of global water use) is inevitably forced to utilize marginal or sewage water (treated or even untreated) to meet the increasing demands.

Although disposal of wastewater to crop irrigation is as ancient as humankind's cultivation of land, large-scale controlled waste water utilization for irrigation dates only back to last century when so-called sewage farms were established for the purpose of disposing of waste water to prevent river pollution. Estimates on wastewater utilization indicate that about 20 million hectares of agricultural land is irrigated with (treated and untreated) wastewater in around 50 countries worldwide (Bartone and Arlosoroff, 1987). When used properly, this approach is reliable and coast effective with substantial benefits for soil and water resources management as well as plant growth and yields due to its nutrient contents (Sadek and Sawy, 1989; Peterson et al., 1994; Pradhan et al., 2001; Abd-Elfattah et al., 2002). However, it can lead to the accumulation of phytotoxic levels of heavy metals in soils and plant tissues, especially when untreated water is used for crop irrigation (Lutric et al., 1982; Eid, 1984; McBride et al., 1999; Bansal, 2004; Kafeel et al., 2011). Therefore, this poses a great potential threat to the environment and human health.

In Egypt, the use of sewage effluent for irrigation has been practiced more than 100 years ago. The first tree plantation, originally of 200 ha, utilizing treated sewage water in El-Gabal El-Asfar farm (about 30 km from Cairo) was established in 1911 to dispose of the city