The Role of MRI in Evaluation of Ductal Carcinoma in Situ in Female Breast

Essay

Submitted for partial fulfillment of the master degree in **Radiodiagnosis**

Submitted by

Noha Abd Al-Kader Ali Mohamed Seif M.B.B.CH Tanta University

Supervised by

Dr. Sherif Hamed Abo Gamra

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Hossam Moussa Sakr

Assistant Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2015

First of all, I would like to express my deep gratitude to ALLAH for his care and generosity throughout my life and for blessing this work, until it has reached its end.

I would like to express my deep gratitude and appreciation to **Dr. Sherif Hamed Abo Gamra**, Professor of Radiodiagnosis, Faculty of Medicine Ain Shams University, for his creative suggestions, fatherhood and encouragement throughout this work, besides the tremendous effort he has done in the revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my deep appreciation and gratitude to **Dr. Hossam Moussa Sakr**, Assistant Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his overwhelming help, continuous directions and support throughout the whole work.

Noha Abd Al-Kader Ali Mohamed Seif

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations.	vi
Introduction	1
Aim of the Work	3
Embryology and Development of the Breast	4
Pathology of Breast Lesions	22
Technique of MR Mammography	36
MRI Manifestations of Ductal Carcinoma in Situ	73
Summary and Conclusion	123
References	126
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Comparison of risk factors for ductal situ (DCIS) and invasive breast cancer.	
Table (2):	Breast Imaging Reporting and Databas RADS®)	•

List of Figures

Fig. No.	Title Page N	lo.
Fig. (1):	Normal anatomy of the nipple-areolar complex	8
Fig. (2):	The blood supply and venous drainage of the breast	9
Fig. (3):	Diagram of the principal pathways of lymphatic drainage of the breast	11
Fig. (4):	The lymph nodes of the axilla	12
Fig. (5):	Breast anatomy in US	14
Fig. (6):	A) T1-weighted, axial view, fat-saturated, gadolinium-enhanced Note- fat is dark and muscles are bright, enhancing breast tissue. B) T2-weighted image. Note-fat is bright, fibroglandular tissue is dark.	18
Fig. (7):	Mammogram MLO view showing predominant fatty element of the breast parenchyma.	20
Fig. (8):	Normal breast US scan in a 17-year-old girl	21
Fig. (9):	Diagram shows the Van Nuys system for classification of DCIS	27
Fig. (10):	Photomicrographs	28
Fig. (11):	a, b& c low grade, intermediate grade and high grade comedo type respectively	30
Fig. (12):	Classic lobular carcinoma in situ in 43-year-old woman	31
Fig. (13):	a & b-Microscopic and gross pictures of IDC, respectively	32
Fig. (14):	Patient lying on the table outside of the magnet with breast hanging freely through the breast coil	40

Fig. No.	Title Page N	0.
Fig. (15):	Bilateral breast coils these effective coils use a high performance bilateral solenoid design to provide high signal-to-noise ratio	41
Fig. (16):	(a) Axial MR image obtained (b) Axial US image	43
Fig. (17):	Fat suppression makes enhancing lesions easier to appreciate	47
Fig. (18):	Sagittal MIP reconstructions of both breasts in a 45-year-old female patient	49
Fig. (19):	Schematic drawing of time-enhancement curve types	51
Fig. (20):	Proton single-voxel spectra obtained by using the STEAM sequence	57
Fig. (21):	Single-voxel spectra in the middle and on the right, acquired at 3.0 T by using the PRESS sequence, from an apparently healthy volunteer.	59
Fig. (22):	Biopsy coil device	
Fig. (23):	MRI-guided biopsy using axial, contrast enhanced FLASH 3D T1W fat-suppressed images	62
Fig. (24):	Artifacts due to large breast size	65
Fig. (25):	Susceptibility artifact	67
Fig. (26):	Artifacts due to physiologic motion	69
Fig. (27):	Motion artifact	70
Fig. (28):	Misregistration artifact	71
Fig. (29):	Wraparound artifact at imaging of a patient who underwent mastectomy for invasive ductal carcinoma	72

Fig. No.	Title	Page No.
Fig. (30):	A rendering of the MRI volume (post-contrast acquisition) with the region correspond calcifications in the mammograms indicated by ar	ling to
Fig. (31):	70-year-old woman with recent (< 6 previously) diagnosis of atypical lobular hyp by stereotactic biopsy of right breast calcificati	perplasia
Fig. (32):	47-year-old woman with strong family (mother) of breast cancer.	•
Fig. (33):	Low-grade DCIS in a 61-year-old woman presented with unilateral bloody nipple dischangative mammographic findings.	arge and
Fig. (34):	Intermediate-grade DCIS in a 53- year-old with biopsy-proved invasive ductal carcinom contralateral breast	a in the
Fig. (35):	Subtracted image of an invasive ductal (arrowhead) and linear enhancement in carcinoma in situ (arrow)	ductal
Fig. (36):	50-year-old woman with strong family his breast and ovarian cancer (maternal grandmother, and great aunts)	aunts,
Fig. (37):	55-year-old woman with <i>BRCA1</i> gene mutathistory of breast-conserving therapy	
Fig. (38):	29-year-old woman with strong family his breast cancer who presented with palpable rig outer quadrant lump that was seen on sonogra 1-cm solid mass.	ht upper phy as a
Fig. (39):	High-grade DCIS without necroses in a 48-asymptomatic woman.	•

Fig. No.	Title	Page No.
Fig. (40):	52-year-old woman with MRI findings of pu carcinoma in situ lesions, which appear as lesions.	nonmass
Fig. (41):	49-year-old woman with MRI findings of pu carcinoma in situ lesion, which appears as ma	
Fig. (42):	Sagittal (a) and axial (b) MIP images of both demonstrated a ductal carcinoma <i>in situ</i> in a old female patient	53-year-
Fig. (43):	47-year-old woman with contralateral breast Sagittal subtracted image of fat-suppressed 33 gradient-echo MR image	D spoiled
Fig. (44):	Woman 43 years of age, screening mammog the left breast.	
Fig. (45):	Woman 51 years of age, Transverse contrast- T1 FLASH 3D MRI, subtraction image	
Fig. (46):	An example of a malignant lesion presenting masslike enhancement (ductal carcinoma in sa 47-year-old patient, showing an unenhanced saturated T1-weighted image	situ) from d non-fat-
Fig. (47):	Mediolateral oblique and craniocaudal MM the right breast. Highly dense tissue on the M	` '
Fig. (48):	A 61-year-old woman with low-grade pure Do	CIS101
Fig. (49):	A 55-year-old woman with intermediate-gr	•
Fig. (50):	A 61-year-old woman with intermediate-gr	•
Fig. (51):	A 39-year-old woman with high-grade pure D	CIS104

Fig. No.	Title	Page No.
Fig. (52): Fig. (53):	A 47-year-old woman with high-grade pure Intermediate-grade DCIS (arrows) with clump morphology (BI-RADS- 4) in the left breast acquired, T1- weighted, fat-saturated, contrast en	ped NMLE on axially
Fig. (54):	Small low-grade DCIS (arrows) lesion with morphology (BI-RADS 4) in the right breast acquired, T1-weighted, fat-saturated	t on axially
Fig. (55):	Malignant lesion with nonmasslike enhancer	ment110
Fig. (56):	52-year-old woman who underwent dynamic enhanced MRI for evaluation of extent diagnosed invasive ductal carcinoma	of newly
Fig. (57):	Findings in right breast of 43-year-old we recent diagnosis of left-sided breast cancer.	
Fig. (58):	High-grade DCIS in a 56-year-old woman	113
Fig. (59):	DCIS in a 57-year-old woman who press bloody nipple discharge from the right breas	
Fig. (60):	34-year-old woman with ductal carcinoma in	n situ117
Fig. (61):	DCE-MRI shows a fairly defined nonhornenhanced focal soft tissue lesion in a waprevious BCT for small DCIS	omen with
Fig. (62):	This patient with a history of ductal carcino (DCIS) in the left breast presented with calciful previously was treated with lumpectomy and rad	ications and
Fig. (63):	Screenshot from a biopsy procedure, using a core needle to biopsy an non-mass-like enhancement in the upper outer quadrant of the	e area of
Fig. (64):	Screenshot from a biopsy procedure using vacuum-assisted needle to biopsy a small lesion with an irregular margin at six o'clieft breast	mass-like

Tist of Abbreviations

Abb.	Stands for
ACR	American College of Radiology
ADC	Apparent diffusion coofficient
BCT	Breast conservation therapy
BIRADS	Breast Imaging Reporting and Data System
Cho	Choline
CC	Cranio coudal
DWI	Diffusion weighted imaging
DCIS	Ductal carcinoma in situ
DCE-MRI	Dynamic contrast enhanced MRI
EPI	Echo planner imaging
FOV	Field of view
IV	Intra venous
IDC	Invasive ductal carcinoma
ILC	Invasive lobular carcinoma
LCNB	Large core-needle biopsy
LCIS	Lobular carcinoma in situ
MRI	Magnetic resonance imaging
MRS	Magnetic resonance spectroscopy
MG	Mammography
MIP	Maximum intensity projection
MLO	Medio lateral oblique
NMLE	Non mass like enhancement
NOS	Not otherwise specified
P	Peak

Tist of Abbreviations (Cont...)

Abb.	Stands for
PRESS	Point-resolved spatially localized spectroscopy
ROI	Region of interest
SVS	Single voxel spectroscopy
SNR	Sound to noise ratio
SI	Spectroscopic imaging
STEAM	Stimulated echo acquisition mode
tCho	Total choline
US	Ultra sound
VAB	Vacuum- assisted biopsy

Introduction

Ductal carcinoma in situ (DCIS) is histologically not considered as a single entity, but as a heterogeneous group of lesions that differ in their histopathologic features, growth pattern, clinical presentation and biological behavior. Before the advent of widespread mammographic screening, DCIS was rarely detected and accounted for only 0.8%-5.0% of all breast cancers. With the introduction of mammographic screening, DCIS accounted for 15-20% of all detected breast cancers, and for 25%-56% of all clinically occult cancers (Stomper, 2013).

Although the detection of DCIS has increased with the advent of widespread mammography screening, it is essential to have a more accurate assessment of the extent of DCIS for successful breast conservation therapy. Recent studies evaluating the detection of DCIS with magnetic resonance (MR) imaging have used high spatial resolution techniques and have increasingly been performed to screen a high-risk population as well as to evaluate the extent of disease (*Lehman et al.*, 2011).

DCIS may have variable morphologic features on MR images, with non-mass enhancement morphology being the most common manifestation. Less commonly, DCIS may also manifest as a mass on MR images, in which case it is most likely to be irregular (Yamada et al., 2011).

The role of MRI in patient known to have ductal carcinoma in situ is to assess residual disease, occult invasion, and multicentricity (Esserman et al., 2011).

Additional MR imaging tools such as diffusion-weighted imaging and quantitative kinetic analysis combined with the benefit of high field strength, may increase the sensitivity and specificity of breast MR imaging in the detection of DCIS (Mossa-Basha et al., 2012).

The breast imaging allows a standardized and consistent description of the morphologic and kinetic characteristics of breast lesions; however, there are many challenges in the interpretation of breast enhancement patterns and kinetics, and many imaging and interpretation pitfalls must be considered. New breast MR imaging techniques that are based on the use of molecular markers of malignancy may help improve lesion characterization (Ikeda et al., 2011).

AIM OF THE WORK

Valuation of the role of magnetic resonance imaging in detection and follow up of ductal carcinoma in situ in female breast.