Effect of vitamin D on Expression of microRNA-22 and microRNA-125b in Behcet Disease

Thesis

Submitted for Partial Fulfillment of M.Sc. Degree in **Biochemistry and Molecular Biology**

 $\mathcal{B}y$

Randa Mohamed Essameldin Moussa Erfan M.B., B.Ch.

Under Supervision of

Prof. Dr. Yasser Hussein Nassar

Professor of Medical Biochemistry and Molecular Biology Faculty of Medicine, Cairo University

Prof. Dr. Tamer Atef Gheita

Professor of Rheumatology and Rehabilitation Faculty of Medicine, Cairo University

Or. George Nazih Bishara Morcos

Lecturer of Medical Biochemistry and Molecular Biology Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2016

CONTENTS

	Page
Abstract	II
Acknowledgement	III
List of Abbreviations	IV
List of Figures	VIII
List of Tables	X
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE:	
• CHAPTER I: Behcet's Disease	4
CHAPTER II: Pathogenesis of Behçet's Disease	42
• CHAPTER III: Vitamin D	61
• CHAPTER IV: MicroRNAs	87
PATIENS AND METHODS	106
RESULTS	116
DISCUSSION	137
SUMMARY	143
CONCLUSION	145
RECOMMENDATIONS	146
REFERENCES	147
ARARIC SUMMARY	

Abstract

Behcet's Disease (BD) is a chronic inflammatory disease with exacerbations and characterized bv recurrent orogenital ulcerations. manifestations, arthritis, and vasculitis. In addition, neurological and large vessel involvement can occur. The etiology and pathogenesis of Behcet's Disease have not been clearly defined. However, several genetic, environmental, and immunological factors have been suggested as causative factors in this disease The primary mechanism of the damage is an overactive immune system that seems to target the patient's own body. The involvement of a subset of T cells seems to be important. Vitamin D has long been known to be important for bone health and turnover. It has major biologic activities including cellular proliferation and differentiation, immune system modulation and muscle strengthening. A growing body of evidence supports the hypothesis that vitamin D is an environmental factor important in the etiology of T-cell-mediated autoimmune diseases. The biological effect of vitamin D is thought to occur by binding to its receptor (VDR) which belongs to the steroid receptor superfamily. VDR gene polymorphisms cause functional differences in immuno-modulatory action of vitamin D. This receptor is widely expressed in many cell types including antigen-presenting and lymphocytes cells. There is significant decrease in the level of Vitamin D in patient with Behcet disease.

Conclusion: The expression of microRNA 125b shows its statistically significant increase in patients of Behcet disease. Although the expression of microRNA 22 shows no significant difference between patients and control however its expression is lower in patients receiving steroid treatment compared to those who do not receive the treatment.

Keywords: vitamin D, microRNA-22, microRNA-125b, Behcet Disease

Acknowledgement

Before all I would like to express my deepest thanks to ALLAH without his great blessings, I would never have accomplished this work.

I wish to express my deep appreciation and gratitude to Prof. Dr. Yaser Hussein Nassar, Professor of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, for his parental support and constructive advice throughout the work.

I would like to express my great and deep gratitude and loyalty to Prof. Dr. Tamer Mohamed Atef Gheta, Professor of Rheumatology and Rehabilitation, Faculty of Medicine, Cairo University, for his sincere effort and unlimited support until this work was fulfilled.

I am very grateful to Dr. George Nazih Bishara Morcos, Lecturer of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University for his great effort and support to me.

My deep appreciation to all the staff members of Medical Biochemistry and Molecular Biology Department in Faculty of Medicine, Cairo University.

Finally many thanks to my family.

List of Abbreviations

AD	Allelic discrimination
Ago	Argonaute
Alb	Albumin
ALK	Alkaline phosphatase
ALT	Alanine transaminase
ANA	Antinuclear antibody
ASO	Anti-sense oligonucleotides
AST	Aspartate transaminase
Bcl-Xl	B-cell lymphoma-extra large
BIC	B-cell integration cluster
Bil	Bilirubin
BD	Behcet's Disease
bp	Base pair
BT	Breakthrough
CBC	Complete blood count
CD	Cluster of differentiation
СНС	Chronic hepatitis C
CLDN1	Claudin-1
CsA	Cyclosporin A
CYP3A4	cytochrome P450, family 3, subfamily A, polypeptide 4
DAA	Direct acting antiviral
DGAT	Diacylglycerol O-acyltransferase
VDR	Vitamin D Receptors
DNA	Deoxyribonucleic acid
dNTPs	Deoxy-nucleotide triphosphate
miRNA	Micro Ribonucleic acid
ds-RNA	Double stranded RNA
ISG	International Study group
EDTA	Ethylenediaminetetraacetic acid
EGFR	Epidermal growth factor receptor
eIF3	Eukaryotic initiation factor
ELISA	Enzyme-linked immunosorbent assay
VEGF	vascular endothehal growthfactor

ICBD	International Criteria of Behcet's Disease
ER	Endoplasmic reticulum
RAS	Recurrent aphthous stomatitis
EVR	Early virlogical response
BSAS	Behcet's Syndrome Activity Scale
Glu	Glucose
Gt	Genotype
GWAS	Genome wide association study
ESR	Erythrocyte Sedimentation Rate
CBC	Complete Blood Count
EULAR	European LeagueAgainst Rheumatism
НСС	Hepatocellular carcinoma
HCV	Hepatitis C virus
TNF	Tumor necrosis factor
HTA	Host targeting antiviral
IgG	Immunoglobulins G
Igf	insulin-like growth factor
IFN	Interferon
IPS-1	Interferon β promoter stimulator
IRES	Internal ribosome entry site
IRF	Interferon regulatory factor
PAAs	Pulmonary artery aneurysms
ISGF	Interferon-stimulated gene factor
IL	Interleukin
IMPDH	Inosine monophosphate dehydrogenase
JAK	Janus kinase
JNK	c-Jun N-terminal kinase
LDs	Lipid droplets
LNA	locked nucleic acid
miRNA	MicroRNAs
mRNA	Messenger ribonucleic acid
AZA	Azathioprine
NF-kB	Nuclear factor kappa-light-chain-enhancer of activated B cells
ncRNAs	Non-coding RNAs
NI	Nucleoside analog inhibitor

NL	Null response
nt	Nucleotide
NTC	Non template control
OCLN	Occludin
ORF	Open reading frame
P-bodies	processing bodies
PBMC	Peripheral blood mononuclear cells
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
PegIFN	Pegylated interferon
pН	Potential hydrogen
PIs	Protease inhibitors
PI-KA	Phosphatidyl inositol kinase A
Pol II	Polymerase II
PPAR	Peroxisome proliferator-activated receptor
pre-miRNA	precursor miRNA
pri-miRNA	primary miRNA
PRKRA	protein kinase, interferon-inducible double- stranded RNA-dependent activator
PR	Partial response
PT	Prothrombin time
Q	Quencher
R	Reporter
RBV	Ribavarin
RFLP	Restriction fragment length polymorphism
RIG-I	Retenoic acid inducible gene I
RISC	RNA-induced silencing complex
RLC	RISC loading complex
RNA	Ribonucleic acid
rpm	Revolutions per minute
RT-PCR	Reverse transcriptase polymerase chain reaction
RVR	Rapid virological response
S	Standard
SDS	Sodium dodecyl sulphate
SHP	Src(sarcoma) homology 2-domain containing tyrosine phosphatase
SL	Stem loop

SNP	Single nucleotide polymorphism
SOCS	Suppressor of cytokine signaling
SP	Specificity protein
SR-BI	Scavenger receptor type B class I
STAT	Signal transducer and Activator of transcription
SVC	Spontaneous viral clearance
SVR	Sustained viralological response
T	Test
Taq	Thermus aquaticus
TGF-β	Transforming growth factor beta
TH	T helper
TIR	Toll/interleukin 1 receptor
TLR	Toll like receptor
TNF	Tumor necrosis factor
TPV	telaprevir
TRIF	TIR domain-containing adapter-inducing interferon β
TRBP	Trans-activation response RNA-binding protein
TSH	Thyroid stimulating hormone
TU	transcription unit
TyK	Tyrosine kinase
UTRs	Untranslated regions
UVB	Ultra violet B
VLDL	Very low-density lipoprotein
WHO	World Health Organization

List of Figures

Fig. No.	Subject	Page
1.	Prevalence of Behçet's disease	7
2.	Actual knowledge into Behçet disease pathogenesis	60
3.	Vitamin D metabolism	64
4.	1a,25(OH)2D3 activation of genomic and non-genomic (rapid response) cellular signaling	69
5.	The immunomodulatory effects of vitamin D on immune cells	77
6.	Positions of polymorphisms in the vitamin D receptor gene	86
7.	The genomic organization and structure of miRNA genes	90
8.	The biogenesis pathway of miRNA	94
9.	The miRNA editing pathways	95
10.	miRNA-mRNA complementarity	97
11.	Comparison between cases and controls regarding age	116
12.	Comparison between cases and controls regarding sex	117
13.	Comparison between cases and controls regarding vitamin D level	117
14.	Description of sex and family history among cases only	118
15.	Examination findings	119
16.	Pathergy test	121
17.	Therapies	121
18.	Activity	122
19.	Scatter plot showing the positive correlation between Vitamin D and HR	123
20.	Scatter plot showing the positive correlation between Vitamin D and Fold change (microRNA 125b)	124

Fig. No.	Subject	Page
21.	Comparison of vitamin D level as regards sex distribution and family history	125
22.	Comparison of vitamin D level as regards received therapies	127
23.	Comparison of Fold change (micro RNA 125b) as regards sex distribution and family history	129
24.	Scatter plot showing the positive correlation between Fold change (microRNA 22) andHR	132
25.	Comparison of Fold change (micro RNA 22) as regards received therapies and activity	134
26.	ROC curve analysis to explore the discriminant ability of vitamin D to differentiate between cases & controls	135

List of Table

Table No.	Subject	Page
1.	Comparison between cases and controls regarding age and sex	116
2.	Comparison between cases and controls regarding vitamin D level	117
3.	Description of quantitative variables among cases only	118
4.	Description of sex and family history among cases only	118
5.	Examination findings	119
6.	Detailed examination findings	120
7.	Pathergy test	121
8.	Therapies	121
9.	Activity	122
10.	Correlation of vitamin D with age and disease duration	123
11.	Correlation of vitamin D with blood pressure, heart rate and BDCAI	123
12.	Correlation of vitamin D with micro RNA 125b and 22 (Fold change)	124
13.	Comparison of vitamin D level as regards sex distribution and family history	125
14.	Comparison of vitamin D level as regards different clinical signs	126
15.	Comparison of vitamin D level as regards received therapies	127
16.	Comparison of vitamin D level as regards activity	128
17.	Correlation of Fold change (microRNA 125b) with age and disease duration	128
18.	Correlation of Fold change (micro RNA 125b) with clinical findings	128
19.	Comparison of Fold change (micro RNA 125b) as regards sex distribution and family history	129

Table No.	Subject	Page
20.	Comparison of Fold change (micro RNA 125b) as regards clinical findings	130
21.	Comparison of Fold change (micro RNA 125b) as regards received therapies and activity	131
22.	Correlation of Fold change (micro RNA 22) with age and disease duration	132
23.	Correlation of Fold change (micro RNA 22) with clinical findings	132
24.	Comparison of Fold change (micro RNA 22) as regards sex distribution and family history	133
25.	Comparison of Fold change (micro RNA 22) as regards clinical findings	133
26.	Comparison of Fold change (micro RNA 22) as regards received therapies and activity	134
27.	ROC curve analysis to explore the discriminant ability of vitamin D to differentiate between cases & controls	135
28.	Logistic regression model to ability of vitamin D in predicting cases	136
29.	Linear regression model to explore predictors of Vitamin D within cases	136
30.	Linear regression model to explore predictors of Fold change (microRNA 125b) within cases	136
31.	Linear regression model to explore predictors of Fold change (microRNA 22) within cases	136

INTRODUCTION

Behcet's Disease (BD) is a chronic inflammatory disease with exacerbations and remissions characterized by recurrent orogenital ulcerations, ocular manifestations, arthritis, and vasculitis. In addition, neurological and large vessel involvement can occur. The etiology and pathogenesis of Behcet's Disease have not been clearly defined. However, several genetic, environmental, and immunological factors have been suggested as causative factors in this disease. The primary mechanism of the damage is an overactive immune system that seems to target the patient's own body. The involvement of a subset of T cells seems to be important.

Vitamin D has long been known to be important for bone health and turnover. It has major biologic activities including cellular proliferation and differentiation, immune system modulation and muscle strengthening. A growing body of evidence supports the hypothesis that vitamin D is an environmental factor important in the etiology of T-cell-mediated autoimmune diseases.

The biological effect of vitamin D is thought to occur by binding to its receptor (VDR) which belongs to the steroid receptor superfamily. VDR gene polymorphisms cause functional differences in immuno-modulatory action of vitamin D. This receptor is widely expressed in many cell types including antigen-presenting and lymphocytes cells.

MicroRNAs (miRNAs) are short non-coding RNAs with wide gene regulatory activity at the posttranscriptional level. MiRNAs associate with several proteins in RNA silencing complexes that cause mRNA degradation or translation inhibition, or both processes.

In recent years, miRNAs have been shown to play key roles in cancer as they control the expression of crucial oncogenes and tumour suppressor genes and, accordingly, several miRNAs are either over-expressed or silenced affecting many diseases.

MiRNA-22 augments tumour suppressor activity. 1,25(OH)2D3 modulates cell proliferation: it usually has a mild to medium cell-type-dependent inhibitory effect, although stimulatory effects have also been reported. miR-22 is induced by 1,25(OH)2D3 and contributes to its inhibitory effects on the proliferation and migration of cells.

Moreover, anti-miR-22 expression abrogates the regulation by 1,25(OH)2D3 of the RNA levels of several target genes. Importantly, miR-22 is downregulated in a high proportion of colon tumours and its expression correlates directly with that of VDR. Together, miR-22 is a target of 1,25(OH)2D3 and mediates in part its protective action against many diseases.

The microRNA miR-125b is multi-faceted, with the ability to function as a tumor suppressor or an oncogene, depending on the cellular context. To date, the pro-apoptotic role of miR-125b and its underlying mechanisms are unexplored. miR-125b level was positively associated with the rate of apoptosis in HCC tissues.

AIM OF THE WORK

The aim of our study is to investigate serum levels of vitamin D and its effect on miRNA22 and miRNA125B gene expression in Egyptian patients with BD and to evaluate their relationship to disease activity.