Study of the Serotonergic Gene 5-HT_{1B} as a Risk Factor for the Development of Attention Deficit Hyperactive Disorder (ADHD)

Thesis

Submitted for partial fulfillment of the Master Degree
In Pediatrics

By
Dalia Muhammed Saied Hassaballah
MB., B.Ch.

Under the supervision of

Prof. Dr. Farida El Baz Mohamed

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Dr. Sally Soliman Zahra

Assistant Professor of Pediatrics Faculty of Medicine-Ain Shams University

Dr. Tarek Mostafa Kamal

Consultant of Human Genetics Pediatrics Department Ain Shams University Hospitals

> Faculty of Medicine Ain shams University 2017

Acknowledgments

First of all, all gratitude is due to **God** almighty for blessing this work until it has reached its end, as a part of his generous help, throughout my life.

I would like to thank my parents for allowing me to realize my own potential. All the support they have provided me over the years was the greatest gift anyone has ever given me.

Really, I can hardly find that words to express my gratitude to **Professor Farida Elbaz**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like to extend my gratitude to **Dr Sally Soliman Zahra**, Assistant Professor of Pediatrics - Faculty of Medicine, Ain Shams University, for her continuous directions and support thought out this whole work.

I would like also to express my sincere gratitude to **Dr Tarek Mostafa Kamal**, Consultant of Human Genetics Pediatrics department, Ain Shams University Hospitals for

his continuous directions and support thought out this whole work. I really appreciate his patience.

A special thanks to **Dr Ghada H. El Nady**, Fellow at Medical Research Center, Faculty of Medicine, Ain Shams University, for her help and support throughout this work.

Also, my gratitude goes to **Dr. Reham El Hossiny**, Assistant Professor of Pediatrics - Faculty of Medicine, Ain Shams University, for her advice and support throughout this work.

Last, but not least, We are indebted to all patients who participated in this research and made it possible.

Dalia Hassaballah

LIST of Contents

Introduction				
Air	n Of	Work		
Re	view	Of Literature		
		1: Attention Deficit-Hyperactive Disorder		
		nition of ADHD		
1.2	Epid	oidemiology of ADHD		
	_	Subtypes		
	1.2.2	Age		
	1.2.3	Sex		
	1.2.4	Race and ethnicity		
	1.2.5	Socioeconomic status (SES)		
	1.2.6	Geographical distribution		
1.3	Etiol	ogy of ADHD		
	1.3.1	Genetic basis		
		A. Dopaminergic system		
		i. DRD4 receptor gene		
		ii. DRD5 receptor gene		
		iii. DAT1 transporter gene		
		B. Serotonergic system		
		i. 5-HT1 _B receptor gene		
		ii. 5-HT2 _A receptor gene		
	1.3.2	Environmental risk factors		
		A. Pregnancy and early childhood factors		
		i. Prenatal risk factors		
		- External tobacco smoke (ETS)		
		- Nutritional deficiencies		
		ii. Perinatal and early life risk factors		
		iii. Postnatal risk factors		

		B. Micro-nutrients and ADHD
		i. Iron
		ii. Zinc
		iii. Polyunsaturated fatty acids (PUFA)
		iv. Magnesium
		v. Low-protein diet
		vi. Hypersensitivity to food and/or food additives
		C. Socioeconomic risk factors
		D. Environmental toxins
		i. Lead
		ii. Mercury
		iii. Cadmium
		E. Infections and ADHD
1.4	Como	orbidities with ADHD
	1.4.1	ADHD and learning disabilities
	1.4.2	ADHD and anxiety disorder
	1.4.3	ADHD and depression
	1.4.4	ADHD and epilepsy
	1.4.5	ADHD and language and learning disorder
	1.4.6	ADHD and obsessive compulsive disorder
	1.4.7	ADHD and autism
	1.4.8	ADHD and sleep disorder
	1.4.9	ADHD and substance use disorder
1.5	Diagr	nosis of ADHD
	1.5.1	DSM-V criteria for diagnosis of ADHD
	1.5.2	Steps for diagnosis of ADHD
1.6	Mana	gement of ADHD
	1.6.1	Non-pharmacological therapy
		A. Psychoeducation
		B. Behavioral intervention
		C. Social intervention
		D. Psychotherapy

	E. Education/vocational accommodation	
1.6.2	Pharmacological therapy	
	A. Psycho-stimulants	
	B. Non-stimulants	
1.6.3	Complimentary and alternative medicine	
	A. Dietary interventions	
	B. Exercise therapy	
	C. Supplementary interventions	
	i. Essential fatty acids	
	ii. Vitamin B6 and magnesium	
	iii. Iron and zinc	
	iv. Amino acids	
СНАРТЕ	R 2: Serotonergic Gene 5-HT1 _B receptor	
2.1. W	hat is Serotonin?	
2.2. Functions of Serotonin		
2.2.1	.Peripheral Effects of Serotonin	
2.3. Se	rotonin-related Disorders	
2.4. Se	rotonin Receptors	
	Serotonin 5HT1B Receptor Expression and Function	
	.Serotonin 5HT1B Receptor Gene	
	- Gene Structure	
	- Gene Function	
	- Gene Mapping	
СНАРТЕ	R 3: 5-HT1B gene and ADHD	
3.1.Ger	netic Basis for ADHD	
3.1.1	. Implications of 5HT receptors in ADHD	
3.1.2	. Genetic Studies of 5HT1B	

Methods
Results
Discussion
Summary
Conclusion
References
Arabic Summary

List of Abbreviations

5-	SEROTONIN TRANSPORTER GENE
HTT/SLC6A4	
5HT	Serotonin
5HTR	Serotonin Receptor
ADHD	Attention Deficit Hyperactivity Disorder
CAM	Complementary And Alternative Medicine
CD	Conduct Disorder
DA	Dopamine
DAT1	Dopamine Transporter Gene,
DAT1	Human Dopamine Transporter Gene
DDC	Dopamine Decarboxylase Gene
DHA	Docosahexaenoic Acid
D-MPH-ER	Methylphenidate Extended Release.
DRD4	Dopamine Receptor D4
DRD4	D4 Dopamine Receptor Gene
DRD5 GENE	Dopamine Receptor D5
DSM II	Diagnostic And Statistical Manual Of
	Mental Disorders, Second Edition
DSM III	Diagnostic And Statistical Manual Of
	Mental Disorders, Third Edition
DSM IV	Diagnostic And Statistical Manual Of
	Mental Disorders, Fourth Edition

	Diagnostic And Statistical Manual Of Mental Disorders, Fourth Edition Revised
Ī	Diagnostic And Statistical Manual Of Mental Disorders, Fourth Edition Text Revised
	Diagnostic And Statistical Manual Of Mental Disorders, Fifth Edition
EFAS	Essential Fatty Acids
ER	Extended-Release
NA	Noreadrnaline
LDX	Lisdexamfetamine Dimesylate
FDA	Food And Drug Administration
GWAS	Genome-Wide Association Studies
HI	Hyperactive Impulsive
ATX	Atomoxtine
PFC 1	Prefrontal Cortex
CBT	Cognitive Behavioural Therapy
NICE	National Institute For Health And Care
GUIDANCE	Excellence Guidance
GABA	Gamma Amino-Butyric Acid
AC	Adenylyl Cyclase
SNP S	Single-Nucleotide Polymorphism
VNTR	Variable Number Tandum Repeat
	The International Statistical Classification Of Diseases Tenth Edition
ICD 9	The International Statistical Classification

Of Diseases Ninth Edition

ID Iron Deficiency
IQ Intelligence Quotient
IR Immediate Release
LDX Lisdexamfetamine Dimesylate
MPH Methylphenidate
OCD Obsessive Compulsive Disorder
ODD Oppositional Defiant Disorder
PUFA Poly Unsaturated Fatty Acids
SNAP-25 Synaptosomal-Associated Protein 25
5HT1B/ 5HTR1B Serotonin Receptor Gene 1B
5HT2A/5HTR2A Serotonin Receptor Gene 2A

LIST OF FIGURES

Fig. No.	Title	
Figures of	Review:	
Figure (1):	Pathway for serotonin synthesis from tryptophan	
Figure (2):	Forest plot for the paternal transmission of the G allele of the rs6296 polymorphism in HTR1B gene and ADHD	
Figures of Results:		
Figure (3):	Shows no statistically significant difference between patients and controls according to age	
Figure (4):	Shows that patients were significantly associated with having a positive family history of similar psychological conditions more than in controls	
Figure (5):	Shows that patients were associated with significantly larger proportion of family history of consanguinity than controls	

Figure (6): Shows the values for the (WISC) among the patients group
Figure (7): Shows the comparison between the patients group and control group as regards the genotypes and alleles segregation
Figure (8): Comparison between homozygote and heterozygote genotypes among patients according to age (years)
Figure (9): Shows Comparison between homozygote and heterozygote genotypes among patients according to sex
Figure (10): Shows the Comparison between homozygotes and heterozygotes among patients group according to family history of similar condition (ADHD)
Figure (11): Shows the Comparison between homozygote and heterozygote among patients according to consanguinity
Figure (12): Shows the Comparison between homozygote and heterozygote genotypes among patients according to inattentive phenotype of ADHD
Figure (13): Comparison between homozygote and

heterozygote genotypes among patients

	according to hyperactive impulsive phenotype of ADHD
Figure (14):	Comparison between homozygote and heterozygote among patients according to total ADHD index
Figure (15):	Comparison between homozygote and heterozygote genotypes among patients according to WISC
Figure (16):	Comparison between G and C alleles segregation among patients group according to age (years)
Figure (17):	Comparison between G and C alleles segregation among patients according to sex
Figure (18):	Shows the Comparison between G and C alleles segregation among patients according to family history of similar condition (ADHD)
Figure (19):	Shows the Comparison between G and C alleles segregation among patients according to family history of consanguinity

Figure (20):	Shows the Comparison between G and C
	alleles segregation among patients
	according to inattention phenotype of
	ADHD
Figure (21):	Shows the Comparison between G and C alleles segregation among patients according to hyperactive impulsive phenotype of ADHD
Figure (22):	Shows the Comparison between G and C
	alleles segregation among patients
	according to total ADHD index
Figure (23):	Comparison between G and C alleles segregation among patients according to
	WISC

LIST OF TABLES

Table No	o. Title	
Tables of Review:		
Table (1):	Serotonin receptor family	
Table (2):	The following table shows the genetic diversity of the 5HT1B gene	
Tables of Results:		
Table (3):	Descriptive data of the patients and the control group	
Table (4):	Comparison between patients and controls according to age (years)	
Table (5):	Comparison between patients and controls according to family history of similar psychological conditions	
Table (6):	Comparison between cases and controls according to family history of consanguinity	
Table (7):	Conner's classification among the patients group	
Table (8):	Wechsler Intelligence Scale for Children (WISC) description among patients	