

The Integration of Buildings' Energy Simulation Tools (ESTs) with Intelligent Decision Support Systems (IDSS)

By Omar Osama ElRawy

BSc in Building Engineering – Ain Shams University

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architectural Engineering

Under Supervision Of:

Professor Dr. Samir Sadek Hosny

Professor of Architecture and Architectural Computing
Ain Shams University

Dr. Tamer Samir Hamza

Assistant Professor of Architecture Ain Shams University

Cairo, Egypt 2017

Statement

This thesis is submitted as partial fulfillment of M.Sc. degree in Architectural engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or qualification at any other scientific entity.

Name: Omar Osama ElRawy

Signature:

Department of Architecture Faculty of Engineering Ain Shams University

The Integration of Buildings' Energy Simulation Tools (ESTs) with Intelligent Decision Support Systems (IDSS)

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architectural Engineering

Author: Omar Osama ElRawy

LEED AP BD+C, BSc in Building Engineering - Ain Shams University

Examiners Committee Professor Dr. Yasser Hosny Sakr Professor of Architecture - Helwan University Professor Dr. Morad AbdelKader AbdelMohsen Professor of Architecture - Ain Shams University Professor Dr. Samir Sadek Hosny Professor of Architecture - Ain Shams University Thesis Defence Date: 30/10/2017 Graduate Studies: Stamp: Approval: Date: Approval of Faculty Committee: Approval of University Committee: Date: Date:

Acknowledgment

First I thank God that I accomplished this modest work; I thank God for creating all circumstances which facilitated this for me, and for providing me with persistence and strength to accomplish the work till the end, hoping it can be beneficial for researchers as well as practitioners.

Sincere gratitude to my honorable Professor Dr. Samir Sadek for his kind supervision, for the intense knowledge, and above all for all the inspiration he provides, you've been a tremendous mentor for me.

Deep respect and gratitude to my honourable supervisor Dr. Tamer Samir for all the scientific expertise I had from his kind self during thesis supervision, I really thank you for encouraging me and encouraging my research since day one.

I would also like to thank my defence committee members, Professor Dr. Yasser Sakr, and Professor Dr. Morad AbdelKader, thank you for letting my defence be a remarkable moment, and for your insightful comments and beneficial suggestions, thanks to you.

Nobody has been more important to me in the pursuit of this work than the members of my family and my dear parents; words cannot express how grateful I am, you encouraged me a lot to do this, and you are credited with what I am till now, and forever. And thanks to my beautiful big family and to my dear friends for always being there for me.

Special thanks to my dear father, Professor Dr. Osama ElRawy; who had been my inspiration since my first moments in my life, thank you for providing me with moral and technical guidance throughout my life, and for nurturing me till I reach this glorious day.

Dedicated thanks to my professional practice and academic mentor Dr. Osama El-Saeed, who provided me with the pragmatic knowledge and experience, which induced and drove essential ideas throughout my thesis; I'm really grateful to you.

Finally I would like to convey many thanks my colleagues during pre-masters; Eng. Nariman Ismail and Eng. Yasser Salama, you have been great research team partners during this period, I learned a lot from you, and you helped me a lot to pass this essential part.

Abstract

The use of Building Energy Simulation Tools (BESTs) is becoming widely common among building engineers and architects as the need for sustainable buildings keeps growing. The amount of challenges within the energy optimization process is also increasing as (BESTs) are developing to become more detailed. Major challenges such as uncertainty and sensitivity within the energy simulation process and the multivariate property within the energy optimization process are being widely discussed nowadays.

The power of today's computational methods within the field of Artificial Intelligence (AI), and today's proven application of AI branches, such as: expert systems, machine learning, and deep learning; this power, in fusion with the well-established science of Decision Support Systems (DSS), forms Intelligent Decision Support Systems (IDSS); which is expected by the researcher to provide BESTs with the needed intelligence and expertise to be able to solve the existing building's energy simulation challenges, and smoothing the BES process as well.

The multi-disciplinary parametric property of the optimization process, and the occurring variation in constraints along the design and construction phases do also require an energy simulation tool that is capable of co-oping like an expert with this change in different parameters all along the building process timeline; this tool must exist as an aiding tool to the building engineer from the moment the energy model is built, all through the construction phase, and until building operation, this tool must be also capable of producing justifications, and provide certainty and sensitivity assistance to the engineer, for providing more rigid energy related decisions during the model's lifecycle.

Therefore, the thesis aims to study the possible integration between the Buildings' Energy Simulation Tools (BESTs) with the Intelligent Decision Support Systems (IDSS), as an attempt to reach a theoretical framework of a buildable IDSS-aided BEST; BEST-IDSS.

Acronyms and Abbreviations

AHU Air Handling Unit

AI Artificial Intelligence

Basilding's Automation System

BCx Building Commissioning

BDL Building Design Language

BES Building Energy Simulation

BEST Building Energy Simulation Tool

BIM Building Information Modelling

BMS Building Management System

BPD Building Performance Database

BPS Building Performance Simulation

CAD Computer Aided Design

CF Certainty Factor

CHP Combined Heat and Power

COP Coefficient of Performance

Cx Commissioning

DAI Distributed Artificial Intelligence

DALI Digital Accessible Lighting Interface

DM Decision Making

DOE Department Of Energy

DP Differential Pressure

DSS Decision Support System

EER Energy Efficiency Ratio

EM External Memory

EPA Environmental Protection Agency

EST Energy Simulation Tool

ETMY Egyptian Typical Meteorological Year

IBPSA International Building Performance Simulation Association

IDSS Intelligent Decision Support System

IoE Internet of Everything

IoT Internet of Things

IPMVP International Performance Measurement & Verification Protocol

IPS Information Processing System

IWEC International Weather for Energy Calculations

LAN Local Area Network

LEED Leadership in Energy and Environmental Design

LON Local Operating Network

LPD Lighting Power Density

LTM Long Term Memory

M&V Measurement and Verification

M2M Machine to Machine

MCTS Monte Carlo Tree Search

MEP Mechanical, Electrical, and Plumbing

MIS Management Information System

NREL National Renewable Energy Laboratory

O&M Operation and Maintenance

OLAP Online Analytical Processing

OPR Owner Project Requirements

SAGE Semi-Automatic Ground Environment

SHGC Solar Heat Gain Coefficient

STM Short Term Memory

TAB Testing, Adjusting, and Balancing

TR Ton Refrigerant

U-value Measure of thermal transmittance

UI User Interface

VFD Variable Frequency Drive

VT Visible Transmittance

Table of Contents

Statement		I
Acknowled	gment	III
Abstract		IV
Acronyms a	and Abbreviations	V
Table of Co	ontents	VII
List of Figu	ires	X
List of Tabl	les	XII
Introduction	n	1
Overviev	v	2
Problem	Statement	3
Research	Hypothesis	3
Research	Goal and Objectives	3
Research	Methodology – Methods and Tools	4
Scope an	d Limitations	5
CHAPTER	ONE: The Building Energy Simulation (BES)	6
1.1. Prel	iminaries	7
1.1.1.	Historical background	7
1.1.2.	BIM, BPS, and BES	10
1.2. Buil	lding Energy Simulation (BES) principles	12
1.2.1.	BES inputs	12
1.2.2.	Assumptions in energy simulation	17
1.2.3.	Basic tool architecture	19
1.2.4.	BES life-cycle	19
1.2.5.	BES purpose	20
1.3. Buil	lding Energy Simulation (BES) – needs and challenges	21
1.3.1.	BES during predesign/concept	22
1.3.2.	BES during schematic design	23
1.3.3.	BES during design development	24
1.3.4.	BES during construction stages	24
1.3.5.	BES during commissioning and post occupancy	24

1.4. I	Building Energy Simulation (BES) optimization challenges	25
1.4.1.	The multivariate property in Building Energy Simulation (BES)	25
1.4.2.	Uncertainty and sensitivity in Building Energy Simulation (BES)	26
1.5. A	A Review of Building Energy Simulation Tools (BESTs)	31
1.5.1.	Brief review on the available BESTs	32
1.5.2.	Review on the two major BEST engines	33
1.5.3.	The role of BESTs in building operation	37
1.5.4.	Extraction	38
1.6.	Towards the BEST workflow	38
1.6.1.	Comparative analysis on flowchart, workflow, and framework	38
1.6.2.	BEST needs	41
1.7.	Conclusion	45
СНАРТ	ER TWO: Analytical study on Intelligent Decision Support Systems (IDSSs)	46
2.1. I	ntroduction	47
2.2. I	Decision Support Systems (DSSs)	47
2.2.1.	Review on DSS	47
2.2.2.	Model-driven DSS	49
2.2.3.	Knowledge-driven DSS	49
2.2.4.	Summary	49
2.3. I	Review on expert systems	49
2.3.1.	Preliminaries	49
2.3.2.	Introduction to expert systems	50
2.3.3.	Expert systems framework	50
2.3.4.	Expert systems features	51
2.3.5.	Reasoning within an expert system	52
2.4. I	Review on software agents	53
2.4.1.	Definition	53
2.4.2.	Types of software agents	53
2.4.3.	Multi-agent systems	54
2.4.4.	Significance of software agents	54
2.5. I	Review on machine learning	54
2.5.1	Preliminaries	54
2.5.2	Reinforcement learning	55

2.6.	IDS	S significance and capabilities	55
2.6.	.1	Google's AlphaGo	56
2.6.	.2	AlphaGo Building's Automation System (BAS) application	57
2.6.	.3	Microsoft Tay	59
2.7	For	mulating the IDSS framework	59
2.7.	.1	Preliminaries	59
2.7.	.2	Into the IDSS framework	61
СНАЕ	PTER	THREE: The BEST-IDSS Framework	64
3.1.	Intro	oduction	65
3.2.	Dev	reloping the BEST workflow	65
3.2.	1.	Development within the BEST Workflow	65
3.3.	For	mulating the BEST-IDSS framework	71
3.3.	.1	Preliminaries	71
3.3.	.2	The task environment	73
3.3.	.3	The IDSS core	75
3.3.	.4	The knowledge base	75
3.3.	.5	The intelligent agent	77
3.4.	BES	ST-IDSS for building operation – algorithmic operation	78
3.4.	1.	Preliminaries	78
3.4.	2.	The operational IDSS framework	78
Concl	usion	and Recommendations	81
Refere	ences		85
Arabi	c Sum	nmary	92

List of Figures

Figure 1.1. ASHRAE standard 90.1 timeline.	7
Figure 1.2. History of energy analysis computer programs	8
Figure 1.3. Charles Eastman's GLIDE	11
Figure 1.4. Abstract representation of BES semantic gap along the building process	12
Figure 1.5. General data flow of simulation engines	13
Figure 1.6. Building Energy Simulation (BES) parameters.	14
Figure 1.7. Difference between walls and space boundaries	14
Figure 1.8. Commercial Energy End-Use Splits.	16
Figure 1.9. Equipment input wizard from eQUEST BEST.	
Figure 1.10. Typical simulation inputs in terms of input status.	17
Figure 1.11. The difference between model's Validation and Verification.	18
Figure 1.12. Formula converting glass conductance to U-value	18
Figure 1.13. General architecture of energy simulation tools	19
Figure 1.14. The use of (BES) per project phase	22
Figure 1.15. Optimum glazing at 0.6 LPD. LPD = Lighting Power Density	25
Figure 1.16. Optimum glazing at 0.1 LPD. LPD = Lighting Power Density	25
Figure 1.17. Schematic diagram showing relationship among model input parameter uncertaint sensitivity to model output variable uncertainty	•
Figure 1.18. One way of classifying types of uncertainty	
Figure 1.19. Summary of the current satisfaction level in BPS according to professionals' percentage of the current satisfaction level in BPS according to professionals' percentage.	_
Figure 1.20 Wish list of techniques for the integration in BPS for detailed design use accord professionals	ing to
Figure 1.21. Sensitivity decomposition of the electricity consumed by the facility (total consumover the summer months)	_
Figure 1.22. Sensitivity decomposition of the district hot water consumed by the facility consumption over the winter months)	
Figure 1.23. Workflow of the DOE-2.1 engine	34
Figure 1.24. General workflow in the schematic design wizard of eQUEST	35
Figure 1.25 Wizards in eQUEST	
Figure 1.26. EnergyPlus workflow	36
Figure 1.27. Simple workflow.	39
Figure 1.28. Software development framework.	40
Figure 1.29. Software framework	40
Figure 1.30. BESTs development mechanism	41
Figure 1.31. Ideal workflow for energy performance simulation tools	42

Figure 1.32. Some of the suggested simulation controller modules	43
Figure 1.33. The suggested "manufacturer" module	43
Figure 2.1. DIKW chain	47
Figure 2.2. Components of the Decision Support System (DSS)	48
Figure 2.3. Expert systems framework	51
Figure 2.4. Panoramic classification of software agents	53
Figure 2.5. Jennings' classification of software agents. (By the researcher)	53
Figure 2.6. The simple reinforcement learning model	55
Figure 2.7. "Go" full game board	56
Figure 2.8. Exponential complexity of "Go" game	57
Figure 2.9. A central cooling plant in Google's Douglas County, Georgia, data center	58
Figure 2.10. Energy consumption on a typical day deepmind's datacentre	58
Figure 2.11. A sample from Tay's tweets	59
Figure 2.12. Framework of an IDSS system implemented with intelligent agent	61
Figure 2.13. The IDSS framework	62
Figure 3.1. The developed BEST workflow.	66
Figure 3.2. Part of the user interface in the uncertainty/sensitivity mode	68
Figure 3.3. Expected results in the uncertainty/sensitivity mode	68
Figure 3.4. Part of the user interface in multivariate analysis mode	69
Figure 3.5. Unbalanced and fair trade-offs	70
Figure 3.6. Comparing wizards approach to software agents approach	71
Figure 3.7. The formulated BEST-IDSS Framework	72
Figure 3.8. The decision making system	73
Figure 3.9. The map of problem solving	73
Figure 3.10. Formulae of problem solving chances.	75
Figure 3.11. The Internet of Everything.	77
Figure 3.12. Categories of innovativeness	77
Figure 3.13. The building's operation framework	79
Figure 3.14. The IDSS of building operation	80

List of Tables

Table 1.1. Major development of analysis method or simulation program by year, concern	ning whole-
building energy simulation only	9
Table 1.2. Analysis methods' development	10
Table 1.3. Equipment calculations for an office building's pantry zone.	16
Table 1.4. Broad energy modelling goals and benefits	21
Table 1.5. Conceptual design elements identified to be simulated.	23
Table 1.6. Variables for the nodes of the sensitivity decomposition of Facility Electricity	30
Table 1.7. Variables for the nodes of the sensitivity decomposition of District Heating	31
Table 1.8. Currently Available Building Energy Modelling Software Tools	32
Table 1.9. Comparison of functionalities of RIUSKA, eQUEST, DesignBuilder, IDF Ger	nerator, and
IFC HVAC interface.	33
Table 1.10. Comparison of functionalities between DOE-2 and EnergyPlus	37

Introduction

- Overview
- Problem Statement
- Research Hypothesis
- Research Goal and Objectives
- Research Methodology Methods and Tools
- Scope and Limitations