

Colloidal Carriers for Transdermal Delivery

A thesis submitted by

Salma Mahmoud AbdelHafez AbdelFattah

Bachelor of Pharmaceutical Sciences, 2010, Ain Shams University Teaching assistant, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University

For the partial fulfillment of the requirements for the Master Degree in Pharmaceutical Sciences (Drug Technology)

Under the supervision of

Prof. Dr. Omaima Ahmed Sammour

Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Assoc. Prof. Dr. Rania Mohammed Hathout

Associate Professor of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Ain Shams University

Ain Shams University
Faculty of Pharmacy
Department of Pharmaceutics and Industrial Pharmacy
2017

Acknowledgements

In the name of Allah, the Most Gracious, the Most Merciful

All praise be given to Allah, The Almighty, for His uncountable blessings and guidance, without which this thesis would not have been completed.

I would like to express my deep appreciation and profound gratitude to **Professor Dr. Omaima Ahmed Sammour**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her kind supervision, valuable advice and unlimited encouragement. I was honored by working under her supervision.

Words can never show my respectful thanks and sincere gratitude to **Associate Professor Dr. Rania Mohammed Hathout**, Associate Professor of Pharmaceutics and
Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her great
assistance, continuous care and responsive attitude. I've learnt a lot from her; she set
a unique example for such a dedicated scientist and inspiring mentor.

I would also like to thank my colleagues in the Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University for their help and encouragement.

Finally, I would like to thank my family for their support and patience throughout the work in his thesis.

List of Contents

<u>Item</u>	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Abstract	x
General Introduction	1
Scope of Work	24
Chapter I: Preparation, characterization, ex-vivo permeation and cytotoxicity studies of curcumin loaded ultradeformable nanovesicles (CUR-UDNVs)	27
Introduction	28
Experimental	31
Materials	31
Equipment	32
Methods	33
1. Assay of CUR	33
1.1. High Performance Liquid Chromatography (HPLC) assay of CUR in methanol	33
1.1.1. Chromatographic conditions	33
1.1.2. Method Validation	33
1.1.2.1. Limit of detection (LOD) and limit of quantitation (LOQ)	33
1.1.2.2. Standard calibration plot and linearity	33
1.1.2.3. Precision and accuracy	34
1.2. Spectrophotometric assay of CUR	34
1.2.1. Determination of λ_{max} of CUR in methanol and ethanol/PBS mixture (1:1 v/v)	34
1.2.2. Construction of standard calibration plot of CUR in methanol and ethanol/PBS mixture (1:1 v/v)	34
2. Preparation of CUR-UDNVs	35
3. Characterization of the CUR-UDNVs	37
3.1. Measuring the PS and the PDI	37
3.2. Measuring the ZP	37

3.3. Measuring the EE% and the DL%	
3.4. Morphology of the CUR-UDNVs using TEM	
4. <i>Ex-vivo</i> skin permeation and data analysis,	
4.1. Skin preparation for the permeation experiments	
4.2. Skin permeation experiments	
4.3. Data analysis	
5. Cytotoxicity study	
5.1. Cell line propagation	
5.2. Cytotoxicity evaluation using MTT assay	
6. Physical stability study	
7. Statistical data analysis	
Results and Discussion	
1. Assay of CUR	
1.1. HPLC assay of CUR in methanol and its method validation	
1.1.1. LOD and LOQ	
1.1.2. Standard calibration plot and linearity	
1.1.3. Precision and accuracy	
1.2. Spectrophotometric assay of CUR	
1.2.1. Determination of λ_{max} of CUR	
1.2.2. Construction of standard calibration plots of CUR	
2. Choice of the method of preparation of the CUR-UDNVs	
3. Choice of the concentrations of surfactants and penetration enhancers used in the formulation of the ultradeformable nanovesicles	
4. Characterization of the CUR loaded ultradeformable nanovesiclular systems	
4.1. PS and PDI measurements	
4.2. ZP measurements	
4.3. EE% and DL% measurements	
4.4. Morphology of the CUR-UDNVs using TEM	
5. <i>Ex-vivo</i> skin permeation and data analysis results	
6. Cytotoxicity study	
7. Physical stability study	

Conclusions	
preparation: sc	tistical modeling of chitosan nanoparticles (CSNPs) reening different factors and comparing two experimental
	•••••
Experimenta	l
Materials	••••••
Equipment	
Methods	
1. Purification	on of CS
2. Preparation	on of the CS nanoparticles
2.1. OFAT	experiments for studying preliminary factors
2.1.1. S	tirring rate
2.1.2. A	cetic acid concentration
2.1.3. C	S:TPP volume ratio
2.1.4. T	PP pH adjustment
2.2. OFAT	experiments for screening critical factors
2.2.1. C	S:TPP mass ratio
2.2.2. p	H of CS solution
2.2.3. G	Selation temperature
2.3. DOE e	xperiments for studying critical factors
3. Character	ization of the prepared CS nanoparticles
3.1. PS mea	asurement
3.2. Morph	ology of the CS nanoparticles
4. Statistical	analysis
5. Check poi	ints analysis, models validation and best model choice
Results and I	Discussion
1. Choice of	the CS grade
2. Prelimina	ry factors
2.1. Stirring	g rate
2.2. Acetic	acid concentration
2.3. CS:TP	P volume ratio

2.4. TPP pH adjustment	
3. Screening of the critical factors	
4. Morphology of the CS nanoparticles	
5. Statistical modeling	-
6. Check points analysis, model validation and best model choice	
Conclusions	• 1
Chapter III: Preparation, characterization, ex-vivo permeation and confocal laser scanning microscopy (CLSM) studies of curcumin loaded chitosan nanoparticles (CUR-CSNPs)	•
Introduction	• 1
Experimental	. 1
Materials	• 1
Equipment	. 1
Methods	1
1. Preparation of CUR-CSNPs	•
2. Characterization of the CUR-CSNPs	•
2.1. Measuring the PS and the PDI	
2.2. Measuring the ZP	•
2.3. Morphology of the CUR-CSNPs using TEM	
2.4. Measuring the EE% and the amount loaded of CUR	
3. D-optimal experimental design and statistical modeling	
4. Check points and model validation	
5. Choice of formulations for the permeation experiments	
6. Lyophilization of the CUR-CSNPs	
7. <i>Ex-vivo</i> skin permeation and data analysis	
8. CLSM study	
8.1. Synthesis of FITC-labeled CS	
8.2. Preparation of CS nanoparticles for confocal imaging	•
8.3. Confocal laser scanning microscope imaging	•
Results and Discussion	•
1. Morphology of the CUR-CSNPs using TEM imaging	
2. D-optimal experimental design and statistical modeling	-

2.1. Particle diameter analysis	119
2.2. PDI analysis	125
2.3. EE% analysis	131
2.4. The amount of CUR loaded analysis	137
3. Check points analysis and validation of the generated models	143
4. Characterization of the selected formulations for the permeation experiments	144
5. Lyophilization of the CUR-CSNPs	144
6. <i>Ex-vivo</i> skin permeation and data analysis results	146
7. CLSM study results	148
Conclusions	155
General Conclusions and Future Perspectives	156
Summary	158
References	167
Annendix	202

List of Abbreviations

Abbreviation Meaning

3D Three-dimensions

ANOVA Analysis of variance

BBD Box-Behnken design

CCD Central composite design

CLSM Confocal laser scanning microscopy

CS Chitosan

CUR Curcumin

CUR-CSNPs Curcumin loaded chitosan nanoparticles

CUR-UDNVs Curcumin loaded ultradeformable nanovesicles

CV% Coefficient of variation

DL% Drug loading

DLS Dynamic light scattering

DMSO Dimethylsulfoxide

DOD D-optimal design

DOE Design of experiments

EE% Entrapment efficiency

FITC Fluorescein isothiocyanate

HEPES Hydroxyethyl piperazineethanesulfonic acid

HPLC High performance liquid chromatography

IC₅₀ 50% inhibitory concentration

LMW Low molecular weight

LOD Limit of detection

LOQ Limit of quantitation

MTT 3-(4, 5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide

NTA Nanoparticle tracking analysis

OFAT One-factor-at-a-time

PBS Phosphate buffered saline

PDI Polydispersity index

PS Particle size

RSM Response surface methodology

SD Standard deviation

SNEDDS Self nano-emulsifying drug delivery systems

TDDS Transdermal drug delivery systems

TEM Transmission electron microscope

TPP Tripolyphosphate

UV/Vis Ultraviolet/Visual

ZP Zeta potential

List of Tables

Table No.	Table Title	Page
1	CUR formulations for transdermal delivery	19
2	The composition of the prepared CUR-UDNVs	36
3	The relationship between the concentration of CUR in methanol and the corresponding peak area	44
4	Intra-day precision of the HPLC method of the determination of CUR in methanol	45
5	Inter-day precision of the HPLC method of the determination of CUR in methanol	46
6	Intra-day accuracy of the HPLC method of the determination of CUR in methanol	46
7	Inter-day accuracy of the HPLC method used for the determination of CUR in methanol	47
8	The relationship between the concentration of CUR in methanol and the absorbance at 422 nm	49
9	The relationship between the concentration of CUR in ethanol/PBS mixture (1:1 v/v) and the absorbance at 431 nm	50
10	PS, PDI, ZP, EE% and DL% of the prepared formulations	53
11	Partitioning (<i>KH</i>) and diffusivity (D/H^2) parameters, estimated permeability coefficients (k_p) and steady-state fluxes (J_{ss}) from the selected CUR-UDNVs formulations	62
12	IC ₅₀ values of CUR loaded formulations (1b and 6b), their corresponding blank formulations and CUR solution	63
13	Independent variables in Box-Behnken and D-optimal designs for CS nanoparticles preparation	75
14	BBD points	75
15	DOD points	76
16	Check points for models validation and their preparation conditions	79
17	BBD values of the recorded responses	88
18	DOD values of the recorded responses	89

19	Summary of the results of the regression analysis for the two tested statistical designs after fitting to the quadratic model	94
20	Models adequacy and validation	99
21	The independent variables of the DOD and their levels	110
22	Experimental runs of the DOD	111
23	Check points for models validation and their preparation conditions	112
24	The selected formulations and their desirability values	113
25	Values of the measured responses of the DOD	118
26	Characteristics and ANOVA parameters of the PS model	119
27	Significance ($p < 0.05$) of the factors in the PS model	121
28	Characteristics and ANOVA parameters of the PDI model	125
29	Significance ($p < 0.05$) of the factors in the PDI model	127
30	Characteristics and ANOVA parameters of the EE% model	131
31	Significance ($p < 0.05$) of the factors in the EE% model	133
32	Characteristics and ANOVA parameters of the CUR loaded amount model	137
33	Significance ($p < 0.05$) of the factors in the CUR loaded amount model	139
34	Models adequacy and validation	143
35	Characterization of the selected formulations	144
36	Particle diameter and PDI values of the lyophilized formulations after reconstitution	145
37	Partitioning (<i>KH</i>) and diffusivity (D/H^2) parameters, estimated permeability coefficients (k_p) and steady-state fluxes (J_{ss}) from the selected CUR loaded nanoparticles formulations	148

List of Figures

Figure No.	Figure Title	Page
i	The structure of human skin	3
ii	The structure of the <i>stratum corneum</i>	4
iii	The skin penetration pathway (1) the follicular pathway, (2) the transcellular pathway and (3) the intercellular pathway	4
1	Curcuma longa plant, turmeric rhizomes and powdered turmeric	6
iv	Chemical structure of CUR	6
v	The molecular targets of CUR	8
vi	CUR inhibits tumor initiation and progression at multiple stages	9
vii	CUR inhibits tumor initiation	9
viii	CUR inhibits cellular proliferation	10
ix	CUR induces cellular apoptosis	10
х	CUR suppresses angiogenesis and metastasis	11
xi	CUR ameliorates tumor-induced immunosuppression	11
2	HPLC chromatogram of CUR in methanol	43
3	Calibration plot of CUR in methanol	44
4	UV/Vis spectrum of CUR in methanol	48
5	UV/Vis spectrum of CUR in ethanol/PBS mixture (1:1 v/v)	48
6	Calibration plot of CUR in methanol at 422 nm	49
7	Calibration plot of CUR in ethanol/PBS mixture (1:1 v/v) at 431 nm	50
8	Effect of formulation parameters on the PS of the CUR-UDNVs	54
9	Effect of formulation parameters on the PDI of the CUR-UDNVs	54
10	Effect of formulation parameters on the ZP of the CUR-UDNVs	55

11	Effect of formulation parameters on the EE% of the CUR-UDNVs	56
12	Effect of formulation parameters on the DL% of the CUR-UDNVs	57
13	TEM images of formulation 1b ((a) and (b)) and formulation 6b ((c) and (d))	58
14	Permeation of CUR (1000 μ g/ml) from the selected CUR loaded elastic nanovesicular formulations. The lines through the data are the best fits to the appropriate solution of Fick's second law of diffusion. The values of R² were 0.93. 0.99, 0.98, 0.95, 0.81 and 0.99 for formulations 1b, 2b, 3b, 4b, 5b and 6b respectively.	61
15	Results of the MTT assay of CUR loaded formulations (1b and 6b), their corresponding blank formulations and CUR solution	64
16	(a) PS, (b) PDI, (c) ZP and (d) EE% measurements of fresh and 1-month aged selected formulations (1b and 6b)	65
17	Effect of stirring rate on the diameter and PDI of the CS nanoparticles	81
18	Effect of acetic acid concentration on the diameter and PDI of the CS nanoparticles	81
19	Effect of CS:TPP volume ratio on the diameter and PDI of the CS nanoparticles	82
20	Effect of TPP solution pH adjustment on the diameter and PDI of the CS nanoparticles	83
21	Effect of CS:TPP mass ratio on the diameter and PDI of the CS nanoparticles	84
22	Effect of CS solution pH on the diameter and PDI of the CS nanoparticles	84
23	Effect of gelation temperature on the diameter and PDI of the CS nanoparticles	85
24	TEM images of CS nanoparticles from the selected formulations (a) D10, (b) D11, (c) D12 and (d) D17	86
25	Video stills taken during NTA of formulations (a) D10 and (b) D12	86
26	Box-Cox plots for power transforms of (a) Box-Behnken and (b) D-optimal designs	91

27	Predicted versus actual plots for (a) Box-Behnken and (b) D-optimal designs	92
28	Contour plots generated from the BBD demonstrating the effect of CS:TPP mass ratio and the CS solution pH at 4°C, room temperature and 40°C on the CS nanoparticles diameter	95
29	3D surfaces generated from the BBD demonstrating the effect of CS:TPP mass ratio and the CS solution pH at 4°C, room temperature and 40°C on the CS nanoparticles diameter	96
30	Contour plots generated from the DOD demonstrating the effect of CS:TPP mass ratio and the CS solution pH at 4°C, room temperature and 40°C on the CS nanoparticles diameter	97
31	3D surfaces generated from the DOD demonstrating the effect of CS:TPP mass ratio and the CS solution pH at 4°C, room temperature and 40°C on the CS nanoparticles diameter	98
xii	The integrated structure of the hair follicle, together with the hair shaft, the arrector pili muscle and the associated sebaceous gland	104
32	TEM images of a selected CS nanoparticles formulation (S2)	116
33	Box-Cox plot for power transforms of the particle diameter model	120
34	Predicted versus actual plot for the particle diameter model	120
35	Contour plots of the quadratic response surface model of the particle diameter at 0.2% Tween 80 concentration	122
36	Contour plots of the quadratic response surface model of the particle diameter at 0.35% Tween 80 concentration	123
37	Contour plots of the quadratic response surface model of the particle diameter at 0.5% Tween 80 concentration	124
38	Box-Cox plot for power transforms of the PDI model	126
39	Predicted versus actual plot for the PDI model	126
40	Contour plots of the linear response surface model of the PDI at 0.2% Tween 80 concentration	128

41	Contour plots of the linear response surface model of the PDI at 0.35% Tween 80 concentration	129
42	Contour plots of the linear response surface model of the PDI at 0.5% Tween 80 concentration	130
43	Box-Cox plot for power transforms of the EE% model	132
44	Predicted versus actual plot for the EE% model	132
45	Contour plots of the linear response surface model of the EE% at 0.2% Tween 80 concentration	134
46	Contour plots of the linear response surface model of the EE% at 0.35% Tween 80 concentration	135
47	Contour plots of the linear response surface model of the EE% at 0.5% Tween 80 concentration	136
48	Box-Cox plot for power transforms of the amount loaded of CUR model	138
49	Predicted versus actual plot for the amount loaded of CUR model	138
50	Contour plots of the linear response surface model of the amount loaded of CUR at 0.2% Tween 80 concentration	140
51	Contour plots of the linear response surface model of the amount loaded of CUR at 0.35% Tween 80 concentration	141
52	Contour plots of the linear response surface model of the amount loaded of CUR at 0.5% Tween 80 concentration	142
53	Permeation of CUR (500 μ g/ml) from the selected CS nanoparticles formulations. The lines through the data are the best fits to the appropriate solution of Fick's second law of diffusion. The values of R ² were 0.76, 0.87 and 0.88 for formulations S1, S2 and S3 respectively.	147
54	Surface <i>xy</i> images of the <i>stratum corneum</i> subsequent to the application of the FITC-labeled CS nanoparticles (red arrows refer to the hair follicles, yellow arrows refer to the hair shafts and blue arrows refer to the corneocytes borders)	149
55	Z-stack images of the skin subsequent to the application of the FITC-labeled CS nanoparticles sectioned from the skin surface with 1 μm increments	150
56	Z-stack images of the skin subsequent to the application of the FITC-labeled CS nanoparticles scanning from the	151