Impact of obesity in pediatric anesthesia

An Assay

Submitted for partial fulfillment of Master Degree in Anesthesia

 $\mathcal{B}y$:

Fady Lotfy Faragalla M.B.B,Ch.

Under Supervision Of:

Prof. Dr. Amr Esam El-Din Abd El Hamed

Professor of Anesthesiology and Intensive care
Ain Shams University

Dr. ALfred Maurice Said

Assistant Professor of Anesthesiology and Intensive care
Ain Shams University

Dr. Ayman Ibrahim Tharwat

Lecturer of Anesthesiology and Intensive care
Ain Shams University

Faculty of Medicine
Ain-Shams University
2009

Acknowledgement

First of all, I thank GOD

I would like to express my deepest gratitude and sincere thanks to Prof. Dr. Amr Esam El-Din Abd El Hamed Professor of Anesthesiology and Intensive care Ain Shams University, for his continuous encouragement and constructive guidance in the initiation and progress of this work.

I would like to express my deepest gratitude and sincere thanks **Dr. Alfred Maurice Said Assistant Professor of Anesthesiology and Intensive care Ain Shams University,** for his continuous encouragement and constructive guidance in the initiation and progress of this work.

I also fell obliged to **Dr. Ayman Ibrahim Tharwat Lecturer of Anesthesiology and Intensive care Ain Shams University**, who helped me in this work to the very last detail.

Finally,to **my family** for their great psychological and moral support.

Fady Lotfy Faragalla. Cairo, 2009

تأثير السمنه في تخدير الأطفال رسالة توطئة للحصول على درجة الماجستير في التخدير

مقدمه من الطبيب/ فادى لطفى فرج الله بكالوريوس الطب والجراحة

تحت إشراف الأستاذ الدكتور/ عمرو عصام الدين عبد الحميد أستاذ التخدير والعناية المركزه جامعة عين شمس

الدكتور/ ألفريد موريس سعيد أستاذ مساعد التخدير والعناية المركزه جامعة عين شمس

الدكتور/ أيمن ابراهيم ثروت مدرس التخدير والعناية المركزه جامعة عين شمس

> كلية الطب جامعة عين شمس 2009

<u>Content</u>	Page
List of abbreviations	1
List of tables	3
List of figures	4
Introduction	5
Pediatric obesity	8
Etiology of pediatric obesity	16
Physiology of pediatric obesity	24
Anesthesia care of obese pediatric patients	40
English summary	70
Arabic summary	72
References	73

List of abbreviations

A.I.DuPont Alfred international. DuPont Hospital

BIPAP Biphasic positive airway pressure

BIS Bispectral index

BMI Body mass index

Br Bromide

CHD Coronary heart disease

CNS Central nervous system

CO2 Carbon dioxide

CPAP Continuous positive airway pressure

FEV Forced expiratory volume

FEV1 Forced expiratory volume in one second

Fl Fluoride

FRC Functional residual capacity

HDL High density lipoprotien

HHNS Hyperglycemic hyperosmolar nonketotic

syndrome

IBW Ideal body weight

IIH Idiopathic intracranial hypertension

LBW Lean body weight

LDL Low density lipoprotien

LVH Left ventricular hyperatrophy

MCR Melanocortin receptors

MCR4 One form of melanocortin receptor involved in

feeding behaviour

NAFLD Nonalcoholic fatty liver disease

NCHS National center of health statistics

NHANES National health and nutrition examination

survey

O2 Oxygen

OHS Obesity hypoventilation syndrome

OSAS Obestructive sleep apnea sydrome

PEEP Positive end expiratory pressure

TBW Total body weight

Vd Volume of distribution

List of tables

<u>Contents</u> <u>Ta</u>	<u>able</u>
Diseases associated with obesity	1
• Systemic disease processes in the obese	
pediatric population	2
• Intravenous drug dosing in obese patients	3
• Inhalational anesthetic agents and obesity	4
• Anesthetic considerations for the obese pediatric	
presenting for surgery	5

List of figures

<u>Contents</u>	<u>Figure</u>
• Body mass index-for-age percentiles in girls	1
Body mass index-for-age percentiles in boys	2
Prevalance of overweight	3
• Prevalance and rate of rise of childhood and ad	dolescent
overweight undergoing surgery	4

Introduction

The rapidly increasing prevalence of obesity among children and adolescents is one of the most challenging dilemmas facing pediatric care professionals today. Childhood and adolescent obesity are important risk factors for adult obesity, with its consequent morbidity and mortality (*Freedman, et al., 2005*).

Therefore, prevention and/or treatment of childhood and adolescent obesity offer the best hope of preventing adult obesity and its related morbidities. A variety of adverse consequences are associated with being overweight in childhood or adolescence, including but not limited to type 2 diabetes mellitus, hyperlipidemia and hypertension (*Wang, et al., 2002*).

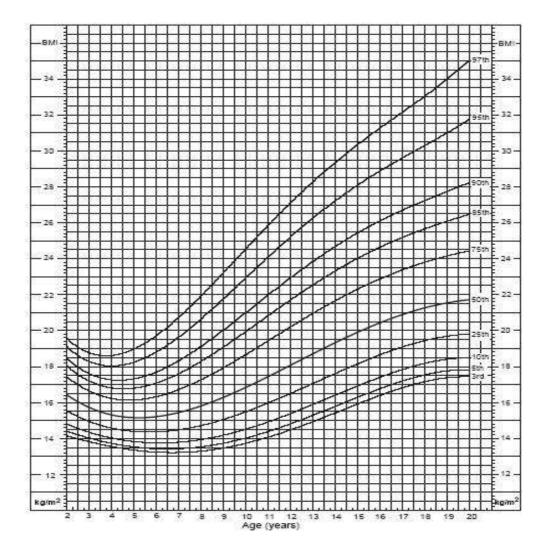
Obese children are special population requiring more planning, consultations, management and time to successfully anticipate their anesthetic needs. These children are more likely to present for certain invasive procedures related to air way management, musculoskeletal correction, and even surgical intervention for obesity. Obese children have a higher risk for airway complications, anesthesia related adverse events, and surgical complications (*Reber*, 2005).

The well recognized harmful effect of anesthesia add significantly to the derangement of physiology of different systems including cardiac, respiratory, endocrine, musculoskeletal, neurological systems and the difficulties encountered in airway management, peripheral access and regional techniques make anesthesia in obese pediatrics a challenge. So a careful and meticulous perioperative work up and management should be done (*Smith*, *et al.*, 2002).

CHAPTER 1

- 1-Pediatric obesity
- 2-Etiology of pediatric obesity

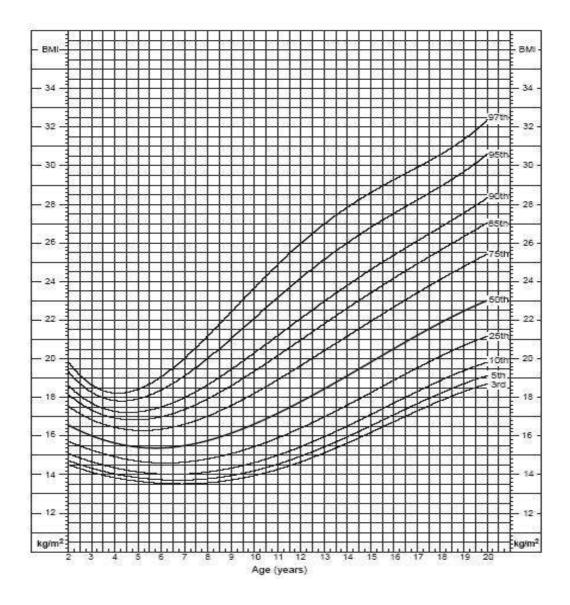
PEDIATRIC OBESITY


From the National Ambulatory Medical care Survey and National Hospital Ambulatory Medical Care Survey 1997 to 2000, Cook found that less than 1% of the pediatric population was diagnosed with obesity (*Cook*, 2005).

Pediatric obesity is under diagnosed by pediatricians and anesthesiologists (*Riley*, 2005).

Very few patients who present for surgical procedures carry the preoperative diagnosis of overweight or obese. Even though it may be obvious to the anesthesiologist, it is necessary to diagnose obesity by standardized methods. The standardized method for classifying obesity in adults is the BMI or body mass index. BMI is defined as weight in kilograms divided by body surface area in meters; it is expected to correlate with body fat and is used to quantify obesity. As of the year 2000, the World Health Organization and the National Institutes of Health used BMI to classify adults into the categories of

overweight (BMI 25 to 29.9 kg/m2), obese (BMI 30 to 39.9 kg/m2), morbidly obese (BMI 40 to 49.9 kg/m2) and super obese (BMI 50 kg/m2 or greater). The classification of obesity is different for children. In pediatrics, BMI is affected by age, gender, and puberty. To measure this moving target, the Centers for Disease Control and Prevention place BMI in the context of the peer population (*Ogden*, *2004*).


Obesity is defined in the relative terms of percentile ranking of the respective gender of the child (Figs. 1 and 2). Children of 2 years to 20 years old are considered at risk for obesity if they are represented at the 80th to 95th percentile of their peers, and overweight if they are equal or greater than 95th percent of the population in BMI. There are no standardized definitions to define super obese children yet (*Kuczmarski*, 2000).

Published May 30, 2000.

SOURCE: Developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Prevention and Health promotion (2000).

Fig1. Body mass index-for-age percentiles in girls, age 2 to 20 years, according to the National Center for Health Statistics.

Published May 30, 2000.

SOURCE: Developed by the National Center for Health Statistics in collaboration with the National Center for Chronic Prevention and Health promotion (2000).

Fig2. Body mass index-for-age percentiles in boys, age 2 to 20 years, according to the National Center for Health Statistics