Management of Thrombotic Microangiopathy overlap syndrome: A clinical trial

Thesis

Submitted for Partial Fulfillment of M.D.

Degree
in Obstetrics & Gynecology

Presented by Mohamed Ahmed El-Sayed El-Nems

M.B.B.Ch., M.Sc.
Ain Shams University (2013)
Obstetrics & Gynecology specialist Egypt Air hospital

Supervised by:

Prof. Mohamed Adel El-Nazer

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Abdelatif Galal El Kholy

Assistant professor of obstetrics and Gynecology Faculty of Medicine – Ain Shams University

Dr. Mostafa Fouad Gomaa

Assistant professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2017

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to Mohamed Adel El-Nazer, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Dr. Abdelatif Galal El Kholy, Assistant professor of obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of Dr. Moustafa Fouad Gomaa, Assistant professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Words fail to express my love, respect and appreciation to my Wife for her unlimited help and support.

Jast but not least, I dedicate this work to My family, specially My mother, whom without their sincere emotional support, pushing me forward this work would not have ever been completed, of course My Father & his Soul Who has been my mentor & enlightened the path for me.

Contents

Subjects	Page
List of Abbreviations	I
List of Tables	IV
List of Figures	VI
 Protocol 	
• Introduction	1
Aim of the Work	6
• Review of Literature	
- Chapter I: HELLP syndrome	8
- Chapter II: Acute fatty liver of pregnancy	22
- Chapter III: Thrombotic microangiopathie	s32
- Chapter IV: Others	
1- Systemic Lupus Erythematosus	52
2- Systemic Viral Sepsis	56
3- Systemic Inflammatory Response	Syndrome
(SIRS)/Septic Shock	58
-Chapter V: Summary of Management	61
Methodology	64
Results	73
Discussion	112
Summary & conclusion	120
Recommendations	125
References	126
• Appendix (1)	139
• Appendix (2)	
• Arabic summary	

List of Abbreviations

ADAMTS13 A disintegrin and metalloproteinase with a

thrombospondin type1 motif, member 13

AFLP Acute fatty liver of pregnancy

aHUS Atypical hemolytic uremic syndrome

APHge Antepartum hemorrhage

APLS Antiphospholipid syndrome (catastrophic)

(CAPS)

APS Antiphospholipid syndrome

ARDS Adult respiratory distress syndrome

AST/ALT Aspartate aminotransferase/Alanine

aminotransferase

ATIII Antithrombin III

BMI Body mass index

BP Blood pressure

BUN Blood urea nitrogen

CBC Complete blood cell

CMP Complete metabolic panel

COCP Combined oral contraceptive pill

CSA Cyclosporine A

CT Computerized tomography

DAT Direct antiglobulin test

DIC Disseminated intravascular coagulation

ESRD End-stage renal disease

FBC Full blood count

FDA Food and drug administration

GVHD Graft-versus-host disease

Tist of Aberrations &

HAART Highly active antiretroviral therapy

HBP High blood pressure

HCT Hematocrit

HEENT Head, ears, eyes, nose and throat

HELLP Hemolysis, elevated liver enzymes and low

platelets

HGB Hemoglobin

HIV Human immunodeficiency virus

HRP Horseradish peroxidase

HUS Hemolytic uremic syndrome

ICHge Intracranial hemorrhage

IgG Immunoglobulin G

IQR Interquartile range

IV Intravenously

LCHAD Long-chain 3-hydroxyacyl-CoA dehydrogenase

deficiency

LDH Lactate dehydrogenase

LFTs Liver function tests

LMWH Low molecular weight heparin

LSCS Lower segment cesarean section

MAHA Microangiopathic hemolytic anemia

MRI Magnetic resonance imaging

OD Once daily

PET Pre-eclampsia

PEX Plasma exchange

PG Primigravida

PGF Placental growth factor

Flist of Aberrations &

PI Plasma infusion

PPHge Postpartum hemorrhage

PT Prothrombin time

PV Plasma volume

S/D FFP Solvent/detergent-treated fresh frozen plasma

SIRS Systemic Inflammatory Response Syndrome

SLE Systemic lupus erythematosus

Stx-HUS Shiga toxin–associated hemolytic-uremia

syndrome

SVD Spontaneous vaginal delivery.

sVEGFR-1 Soluble vascular endothelial growth factor

receptor-1

TAM Transplant-associated microangiopathy

TBV Total blood volume

TLC Total leucocytic count

TMAs Thrombotic microangiopathies

TMB Tetramethylbenzidine

TTP Thrombotic thrombocytopenic purpura

 $\mathbf{U} + \mathbf{E}$ Urea and Electrolytes test

ULVWF Ultra large multimers of VWF

VEGF Vascular endothelial growth factor

VWF Von Willebrand factor

List of Tables

Table No.	Title			
1	Selective intensity of the main parameters in	4		
1	HELLP syndrome and its main imitators.	4		
2	Presenting clinical features and signs in acute.			
3	Typical features in pregnancy-associated microangiopathies.			
4	Main clues to differentiate between HELLP syndrome and its main imitators at the bedside.	62		
5	Mean age, BMI and Parity of the studied cases.	75		
6	Laboratory results among the studied cases.	76		
7	Presenting symptoms and mode of delivery among the studied cases.	78		
8	Neonatal outcome among the studied cases.	80		
9	Maternal morbidity and mortality as well as the percentage of the patients who received the protocol among the studied cases.	81		
10	Mean age, BMI and Parity among the study groups.			
11	Laboratory results among the patients who took the protocol and those who did not.	87		

🛢 List of Tables 🗷

Table No.	Title			
12	Initial presenting symptoms and mode of delivery among the patients who took the	90		
13	protocol and those who did not. Neonatal outcome among the patients who took the protocol and those who did not.			
14	Maternal morbidities and mortality among the patients who took the protocol and those who did not.	94		
15	Correlation between maternal mortality and mean age, BMI and Parity of the studied cases.	97		
16	Correlation between different laboratory results and maternal mortality.	98		
17	Correlation between different initial presenting symptoms and maternal mortality.	104		
18	Correlation between different neonatal outcomes and maternal mortality.	106		
19	Correlation between maternal morbidities and maternal mortality.	109		

List of Figures

Figure	Title	
No.	Title	Page
1	Summary of treatment protocol for acute	63
	TTP.	
2	Parity among the studied cases.	75
3	Initial presenting symptoms among the	79
	studied cases.	
4	Mode of delivery among the studied cases.	79
5	Neonatal outcome among the studied cases.	80
6	Maternal morbidities among the studied	82
	cases.	
7	Percentage of patients who received the	83
	protocol among the studied cases.	
8	Mean age among patients who took the	85
	protocol and those who did not.	
9	Mean BMI among patients who took the	85
	protocol and those who did not.	
10	Mean Parity among patients who took the	86
	protocol and those who did not.	
11	Initial presenting symptoms among patients	92
	who took the protocol and those who did	
	not.	

Figure No.	Title			
12	Maternal morbidities among patients who	96		
	took the protocol and those who did not.			
13	Correlation between ALT results and	101		
	maternal mortality.			
14	Correlation between LDH results and	101		
	maternal mortality.			
15	Correlation between PT results and	102		
	maternal mortality.			
16	Correlation between TLC results and	102		
	maternal mortality.			
17	Correlation between VWF results and	103		
	maternal mortality.			
18	Correlation between VWF results and	103		
	maternal mortality.			
19	Correlation between fever in the initial	106		
	presentation and maternal mortality.			
20	Correlation between living neonates and	108		
	maternal mortality.			
21	Correlation between neonatal death and	108		
	maternal mortality.			

🕏 List of Figures 🗷

Figure No.	Title			
22	Correlation between maternal renal failure	110		
	and maternal mortality.			
23	Correlation between maternal ICHge and	111		
	maternal mortality.			
24	Correlation between maternal blood	111		
	transfusion and maternal mortality.			

Introduction

The thrombotic microangiopathies are microvascular occlusive disorders characterized by systemic or intrarenal aggregation of platelets, thrombocytopenia and mechanical erythrocytes. injuries to the The thrombotic microangiopathies include thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). The incidence of thrombotic microangiopathies is one in every 25000 births. These microangiopathies are often mistaken for preeclampsia and the HELLP (hemolysis, elevated liver enzymes and low platelets) syndrome leading to a delay in the diagnosis and treatment thus contributing to the significant mortality and morbidity (Patnaik et al., 2003).

In the last 15 years there has been a marked increase in the understanding of the pathogenesis of TTP. It is now recognized that congenital and acute acquired TTP are due to a deficiency of von Willebrand factor (VWF) cleaving protein (*Fujikawa et al.*, 2001; Levy et al., 2001).

Ultra large multimers of VWF (ULVWF) released from endothelium are not cleaved appropriately, and cause spontaneous platelet aggregates in conditions of high shear, such as in the microvasculature of the brain, heart and kidneys. Diagnosis can be difficult, as there is clinical overlap with haemolytic uraemic syndrome (HUS),

autoimmune disease and a spectrum of pregnancy-related problems (*Furlan et al.*, 1998).

Thrombotic thrombocytopenic purpura was originally characterized by a pentad of thrombocytopenia, microangiopathic hemolytic anemia (MAHA), fluctuating neurological signs, renal impairment and fever, often with insidious onset. However, TTP can present without the full pentad; up to 35% of patients do not have neurological signs at presentation and renal abnormalities and fever are not prominent features. The revised diagnostic criteria state TTP must be considered in the presence of thrombocytopenia and MAHA alone (Galbusera et al., 2006). This can result in an increased referral of other TMAs. TTP remains a diagnosis based on clinical history, examination of the patient and the blood film.

The Subgroups of TTP are congenital TTP, Acute idiopathic TTP, HIV-associated TTP, Drug-associated TTP, Transplant-associated microangiopathy, Malignancy-associated thrombotic microangiopathy, Pancreatitis-associated TTP and Pregnancy-associated TTP.

Pregnancy can be the initiating event for approximately 5–25% of TTP cases (*Vesely et al.*, 2004; *Scully et al.*, 2008), which are late onset adult congenital TTP or acute idiopathic TTP. Differentiating TTP from the

more common pregnancy-related TMAs, such as preeclampsia, HELLP syndrome (haemolysis, elevated liver enzymes, low platelets) and HUS is difficult, especially if TTP presents post-partum (Table 1). Thrombosis occurs in the placenta in untreated TTP pregnancies and results in fetal growth restriction, intrauterine fetal death and pre eclampsia. There is a continued risk of relapse during subsequent pregnancies (*Ducloy-Bouthors et al.*, 2003; Scully et al., 2006).

Table (1): Selective intensity of the main parameters in HELLP syndrome and its main imitators (*Pourrat et al.*, 2015).

	HELLP	AFLP	TTP	HUS
Hemolysis	+ to +++	0 to +	+++	++ to +++
Schistocytosis	+ to ++	0 to +	+++	++ to +++
Elevated LDH	++ to +++	+ to ++	+++	++ to +++
Elevated liver enzymes	++ to +++	++ to +++	0 to +	0 to +
Low platelet count	++ to +++	+ to ++	+++	++ to +++
Factor V	N or ↓	11	N	N
Total bilirubin	+	++ to +++	+ to ++	+ to ++
Proteinuria	+++	+	+ to ++	+ to +++
Renal failure	0 to ++	+	0 to ++	++ to +++
DIC	+ to ++	+ to +++	0	0
Hypoglycemia	0 to +	+ to +++	0	0
ADAMTS 13 activity	Detectable	NA	Undetectable	Detectable
Fever	0	+	++	0

HELLP, hemolysis, elevated liver enzymes and low platelet count; AFLP, acute fatty liver of pregnancy; TTP, thrombotic thrombocytopenic purpura; HUS, hemolytic and uremic syndrome; LDH, lactate dehydrogenase; DIC, disseminated intravascular coagulation; ADAMTS 13, a disintegrin and metalloproteinase domain with thrombospondin type-1 motif A disintegrin and metalloproteinase with a thrombospondin type1 motif, member 1; NA, not assessed.

The Haemolytic uraemic syndrome is divided into diarrhea positive (D+) HUS, associated typically with verotoxin-induced bloody diarrhea, is treated with supportive care, which in some cases includes renal dialysis. Diarrhea negative (D-) HUS, not typically associated with bloody diarrhea, but may sometimes be associated with multisystem symptoms, similar to TTP, should be urgently treated with Plasma exchange (PEX) (*Kim et al.*, 2011).

The primary differentiating factor between HUS and TTP is the presence of oliguric/anuric renal impairment/failure in HUS. Increasingly, the role of complement defects in D-, atypical HUS is being defined (*Kavanagh & Goodship*, 2010) and use of the complement inhibitor, eculizumab, appears successful in these cases (*Al- Akash et al.*, 2011; *Riedl et al.*, 2011), but may also have a role in severe D+HUS (*Lapeyraque et al.*, 2011).

During the treatment of acute TTP we should start PEX with 1.5 PV exchanges, using plasma in all age groups and reassessed daily, the volume of exchange can be reduced to 1.0 PV when the clinical condition and laboratory test results are stabilizing but intensification in frequency and or volume of PEX procedures should be considered in life-threatening cases.