Evaluation and Treatment of Petroleum Wastes Produced From Some Installation Tanks and Fuel Stations

By

Magdy Abu Bakr Ahmed Khalifa

B.Sc. (Chemistry), Ain Shams University, (1984)

M. Sc. In Environmental Science, Institute of Environmental Studies and Research-Ain Shams University ,(2006)

A Thesis Submitted in Partial Fulfillment of the Requirement

for

The degree of Doctor of Philosophy

In

Environmental Science

Department of Environmental Basic Science
Institute of Environmental Studies and Research
Ain Shams University

APPROVAL SHEET

Evaluation and Treatment of Petroleum Wastes Produced From Some Installation Tanks and Fuel Stations

Bv

Magdy Abu Bakr Ahmed Khalifa

B.Sc. (Chemistry), Ain Shams University, (1984)

M. Sc. In Environmental Science, Institute of Environmental Studies and Research-Ain Shams University ,(2006)

This Thesis Submitted for the degree of Doctor of Philosophy In

Environmental Science has been Approved by:

Prof. Dr. / Ahmed Ismail Hashem

Professor of organic chemistry, Faculty of science, Ain Shams University

Assistant Prof. / Mohamed El-Badry Shabaan

Professor of organic chemistry, Faculty of science, Ain Shams University

Prof. Dr./ Maher Abbas El-Sockary

Professor of analytical Chemistry, Egyptian Petroleum Research Institute, SPC Director

Dr./ Ahmed El Sayed Mohamed Salem

General Manager of Technical Affairs, Misr Petroleum Company

Evaluation and Treatment of Petroleum Wastes Produced From Some Installation Tanks and Fuel Stations

Bv

Magdy Abu Bakr Ahmed Khalifa

B.Sc. (Chemistry), Ain Shams University,(1984)

M. Sc. In Environmental Science, Institute of Environmental Studies and Research-Ain Shams University, (2006)

A Thesis Submitted in Partial Fulfillment of the Requirement

for

The degree of Doctor of Philosophy

In

Environmental Science

Department of Environmental Basic Science Institute of Environmental Studies and Research

Ain Shams University

Under the supervision of:

Prof. Dr. / Ahmed Ismail Hashem

Professor of Organic Chemistry, Faculty of Science-Ain Shams University

Dr./ Taha Abdel Azim Mohamed Abdel Razek

Assistant Professor of Env. Practical Chemistry, Institute of Environmental Studies and Research-Ain Shams University

Prof. Dr./ Yasser Mohamed Moustafa

Professor of Organic Chemistry, Ministry of Scientific Research, Egyptian Petroleum Research Institute

Dr./ Ahmed El Sayed Mohamed Salem

General Manager of Technical Affairs, Misr Petroleum Company

Acknowledgment

The author wishes to express his deepest thanks and gratitude to: **Prof. Dr. Ahmed Ismail Hashem**, Professor of Organic Chemistry, Faculty of Science, Ain Shams University; **Prof. Dr. Yasser Mohamed Mostafa**, vice — President, Petroleum Research Institute; **Dr. Taha Abdel Azim El-Sabag**, Assistant Professor, Institute of Environmental Studies and Research; **Dr. Ahmed El- Sayed Salem**, General Manager of technical affair, Misr Petroleum Company; not only for suggesting the subjects investigated, but also for their valuable advices and continuous help during the course of this work.

Also, I should express My deepest thanks to my instructor **Dr. Wedad Abdel Azim, and Dr. Sahar Mazen**, Research Center, Misr Petroleum Company for their valuable interest and continuous support.

My appreciation extends to my colleague Mr. Gaber Abu Zied for his willing help in GC analysis.

It is a pleasant duty for the author to express his gratitude to all of his colleagues at the Analytical research Studies and laboratories (Research Center), for their co-operation and encouragement in different phases of this research.

Abstract

Soil samples were collected from nine fuel service stations situated on western agricultural roads (Cairo/ Alexandria road) and one main installation located at Mostorod area. The samples were subjected to four types of chemical analyses: simple gravimetric, column chromatography, gas chromatography and high performance liquid chromatography (HPLC). The results obtained revealed that the soils of these sites are highly contaminated with hydrocarbon pollutants. Polynuclear aromatic hydrocarbons (PAHs) which are considered as the most hazardous pollutants also exist in measurable amounts.

The extracts from soil samples were fractionated using column chromatograph to determine saturate % ,mono-aromatic % ,di-aromatic % and poly-aromatic percentages. Also analyses of the aromatic compounds using high performance liquid chromatography proved that the total concentrations are ranging between 0.11and 7.93 $\mu g/g$ dry weight. This means that PAHs exist in the collected samples in measurable amounts.

Abbreviations

ATSDR Agency for Toxic Substances and Disease Registry

CCME Canadian Council of Ministers of the Environment

CPI Carbon preference Index

EPA Environmental Protection Agency

ITOPF The International Tankers Owners Pollution

Federation

MOPI Means of comprising levels of petrogenic

hydrocarbons

PAHs Polycyclic Aromatic Hydrocarbon

PH Phytane

PR Pristane

R Resolved compounds in the gas chromatogram

RES_H Total resolved hydrocarbons in the hexane fraction

U Unresolved compounds in the gas chromatogram

UCM Unresolved Complex Mixture

UCM_B Unresolved complex mixture in the benzene fraction

UCM_H Unresolved complex mixture in the hexane fraction

WR Weathering Ratio

Contents

I- Introduction	1
I- 1-Petroleum Oil:	1
1-1-1-Chemistry of petroleum oil:	2
1-1-2 Physical properties of oil:	6
1-2 Advances in oil fingerprint techniques:	8
1-3- Effects of Weathering on Petroleum product wastes:	12
1-3-1- Hydrocarbon weathering:	12
1-3-2-Behavior of petroleum products in Soil:	12
1-3-3-Chemical changes due to weathering:	24
1-4-Polycyclic aromatic hydrocarbons (PAHs):	24
I- 4-1- PAH Distribution Pattern Recognition:	26
I-5-Techniques used for the characterization of polluted samples	29
I-5-1-Gravimetric Techniques	30
I-5-2-Column chromatographic analysis:	30
I-5-3-Thin layer chromatography (TLC) fingerprinting	31
I-5-4-Gas chromatography (GC)	32
I-5-5-GC-MS spectrophotometry	35
I-5-6-High performance liquid chromatography (HPLC)	36
II- EXPERIMENTAL	40
II-1. Sampling:	40
II-1.1. Soil samples:	40
II-1.2. Petroleum product samples:	42
II-2 Oil extraction:	45
II-2.1. Simple gravimetric analysis:	46
II-2.2. Column chromatographic analysis:	47
II-2.3. Gas chromatography:	50
II-2.4. High performance chromatography:	
II-3 Treatment of the most polluted soil sample:	52

II-3.1. Treatment of the polluted samples with sulphuric acid	1: 52
II-3.2 Surfactant treatment	53
II.3.3. Biological Treatment	54
II-4. Evaluation of the treated soil	56
II-4.1. Ultra violt (UV)ASTM (2008)	56
II-4.2 Infrared (IR) (ASTM)	56
Results and Discussion	58
III.1 Simple gravimetric analysis:	59
III.2 Column chromatographic analysis:	60
III.3 Gas chromatographic analysis:	68
III.4 High performance liquid chromatographic analysis (HPLC):	79
III.5 Treatment of the most polluted soil sample	95
III.5.1. Chemical treatments	95
III.5.2. Sulfuric acid treatment (Sulphonation)	96
III.5.3. Surfactant Treatments	97
III.5.4. Biological Treatment	97
SUMMARY	107
Pafarancas	111

List of Figures

Page
Figure 1: The nomenclatures, chemical structure and abbreviations for 16 priority PAHs
Figure 2: The main weathering processes
Figure 3: A schematic- representation of the fate of a crude oil spill 19
Figure III.1: Gas Chromatogram of Gas Oil Sample
Figure III.2: Gas Chromatogram of Heavy Fuel Oil Sample
Figure III.3: Gas Chromatogram of Lubricating Oil Sample
Figure III.4: Gas Chromatogram of El-Gaafrra Sat Sample
Figure III.5: Gas Chromatogram of El-Qatta Sat Sample
Figure III.6: Gas Chromatogram of Mentay Sat Sample
Figure III.7: Gas Chromatogram of Nekla Sat Sample
Figure III.8: Gas Chromatogram of Nawa EL-Gadida Sat Sample 76
Figure III.9: Gas Chromatogram of Berkash Sat Sample
Figure III.10: Gas Chromatogram of El-Manashy Sat Sample
Figure III.11: Gas Chromatogram of El-Qanater-Sat Sample
Figure III.12: Gas Chromatogram of Nawa Sat Sample
Figure III.13: Gas Chromatogram of Mostorod Sat Sample
Figure III.14: HPLC Chromatogram of the Standard PAHs
Figure III.15: HPLC Chromatogram of Gas oil Product Sample
Figure III.16: HPLC Chromatogram of Fuel oil Product Sample

Figure III.33: Showing Biogegradation of products by Bacteria 101

Figure	III.34:	Gas	Chromatograms	of	El-Qanater	Saturate	sample	after
	tre	atmei	nt with surfactant					103

List of Tables

Page
Table II-1: The Collected Soil Samples and Their Locations
Table II-2: Physical and Chemical Properties of the Diesel (Gas oil)
Sample43
Table II-3: Physical and Chemical Properties of the Heavy Fuel oil
Sample44
Table II-4: Physical and Chemical Properties of the lubricating oil Misr
Super HD Motor Oil SAE 50
Table II-5: Refractive Indices of the different hydrocarbon classes
Table II-6-1: Physical and Chemical Properties of n-hexane solvent 49
Table II-6-2: Physical and Chemical Properties of Benzene solvent 50
Table II-6-3: Physical and Chemical Properties of Methanol solvent 49
Table III-1: Simple gravimetric analysis of the collected samples
Table III-2: Hydrocarbon Classes of the Three Petroleum Products 61
Table III-3: Hydrocarbon Classes of the Three Soil Samples Polluted
with Gas Oil62
Table III-4-1: Hydrocarbon Classes of the Polluted Soil Samples
collected from Nekla and Nawa El-Gadida Fuel Stations 63
Table III-4-2: Hydrocarbon Classes of the Polluted Soil Samples
collected from Berkash and El-Manashy Fuel Stations 63
Table III-4-3: Hydrocarbon Classes of the Polluted Soil Samples
collected from El-Qanater and Nawa Fuel Stations64

	Page
Table III-5: Distribution of the different hydrocarbon classes between	
gas oil and lubricating oil	. 65
Table III-6: Hydrocarbon Classes of the Polluted Soil Sample	
-	((
Collected from Mostorod Store Tanks	. 66
Table III-7: Distribution of the hydrocarbon classes between gas oil	
and fuel oil in Mostorod Soil Sample	. 67
Table III-8: Hydrocarbon Classes and Pollution Percentages of the	
Polluted Sites	67
Tonucu Sics	. 07
Table III-9: The Percentages of the Highest Main Saturate	
Components Exist in Gas oil, Fuel oil and Lubricating oil	722
Table III-10: The Percentages of the Highest Main Saturate	
Components Exist in El -Gaafrra , El -Qatta and Mentay	
Soil Samples	. 70
Table III-11: The Percentages of the Highest Main Saturate	
Components Exist in Nekla, Nawa El-Gadida, Berkash, El-	
Manashy, El -Qanater and Nawa Soil Samples	. 70
Table III-12: The Percentages of the Highest Main Saturate	
Components Exist in Mostorod Store Soil Sample	. 71
Table III-13: Low and high carbon numbers	71
Table 111-13: Low and high carbon numbers	. / 1
Table III-14: PAHs in ppm existing in Product Samples	. 82
Table III-15: PAHs in ppm existing in the Soil Samples Polluted With	
Gas Oil	. 83
Table III-16: PAHs in ppm existing in the Six Soil Samples Polluted	
With Gas Oil and Lubricating Oil SAE 50	. 84

	Page
Table III-17: PAHs in ppm existing in Mostorod Store Soil Sample	
Polluted With Gas Oil and Fuel Oil	85
Table III-18: PAHs in ppm existing ins Investigated Sites	86
Table III-19: Show the Efficiency of Surfactants to Treat the Soil	102

AIM OF THE WORK

Petroleum and its refinery products can be accidentally or deliberately released into the environment leading to serious pollution problems. It is well established that hydrocarbon contaminants cause a number of adverse negative impacts on human health, aquacultures, tourism, ecosystem and eventually the national income.

Fuel service stations are usually spread in both rural and urban regions. These stations offer a variety of services e.g. fuel supply, lubricating oil exchange, car washing etc.... A release of some of these hydrocarbon products to the environment might occur either due to some spillage or leakage or even caused by the accidental charging and discharging processes, the wastes of these processes are sometimes released to the environment causing soil contamination.

In this investigation, soil samples from nine fuel stations situated on Cairo/Alexandria agricultural western roads (the grounds of most of these stations are usually dusty, and hence susceptible to more pollution by the hydrocarbon wastes) and from the location of Misr Petroleum Company store tanks (at Mostorod) were collected. These samples were subjected to gravimetric, column chromatography, GC and HPLC analyses in an attempt to measure the extent, types and the total of hydrocarbon pollutants in each sample at these sites.

The study aims to find a suitable and effective method for treating the passive effects in these polluted sites and