

Thesis

Submitted for the Degree of Doctor of Teacher's Preparation in Science (Physics).

$\mathbf{B}\mathbf{v}$

Makram Ibrahim Ismail Gomaa

B.Sc. and Education, Gen. Diploma, and Spec. Diploma (Physics), M.Sc, (Physics).

To

Department of Physics Faculty of Education Ain Shams University Supervised by

Prof. Dr. Mahmoud Mohammed El-Nahass

Prof. Physics Dept., Faculty of Education, Ain Shams University.

Dr. Attia Abd El-Motteleb Attia

Ass. Prof. Physics Dept., Faculty of Education, Ain Shams University.

Dr. Hend Ali Mohammed

Ass. Prof. Physics Dept. Faculty of Education, Ain Shams University.

Dr. Gehan Farook Abdh

Lect. Physics Dept. Faculty of Education, Ain Shams University.

2016

Approval Sheet

Title: Study the physical properties of ZnIn₂Se₄ for photovoltaic applications

Candidate: Makram Ibrahim Ismail Gomaa.

Degree : Degree of Doctor of Teacher's Preparation in

Science (Physics).

Board of Advisors

Approved by Signature

1. Prof. Dr. Mahmoud Mohammed El-Nahass.

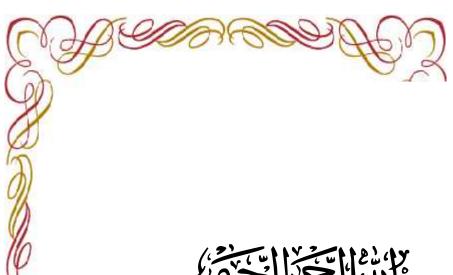
Prof. Physics Department, Faculty of Education, Ain Shams University.

2. Dr. Attia Abd El-Motteleb Attia

Ass. Prof. Physics Department, Faculty of Education, Ain Shams University.

3. Dr. Hend Ali Mohammed

Ass. Prof. Physics Department, Faculty of Education, Ain Shams University.


4. Dr. Gehan Farook Abdh

Lect. Physics Department, Faculty of Education, Ain Shams University.

Date of presentation / / 2016

Post graduate studies:

Stamp: / /	Date	of a	appr	oval: /	′ /
Approval of Faculty Cou	ncil	:	/	/ 2016	•
Approval of University C	Counci	il:	/	/ 2016	

بناتالجائي

" سبحانك لا علم لنا إلا ما علمتنا انك أنت العليم الحكيم"

صدوالك للعظهيم

ACKNOWLEDGMENT

Before all and above all, many thanks to Allah, the most gracious, the most merciful.

The author wishes indebted with his utmost thanks to *Prof. Dr. Mahmoud Mohammed El-Nahass* for continuous supervision, valuable suggestions, encouragement and fruitful advice through this work.

Deepest gratitude to *Dr. Attia Abd El-Motteleb Attia* for his advice, valuable help and encouragement during this study.

The author wishes to thank *Dr. Hend Ali Mohammed* for her valuable help, encouragement and fruitful advice throughout this work.

Thanks to *Dr. Gehan Farook Abdh* for her valuable help, encouragement and fruitful advice throughout this work.

Thanks are also due to *Dr. Ahmed Mahmoud Nawar*, Faculty of Science - Suez Canal University, for his kind assistance and continuous encouragement help.

My deep thanks to all the staff members and colleagues of the thin film and solid state laboratories, Faculty of Education, Ain Shams University.

	·	Page
List	of Figures	1
	of Tables	9
Sun	nmary	10
	oduction	13
	<u>Chapter I</u>	
The	oretical Background and Literature Review.	
1.1	Semiconducting materials.	14
	1.1.1 Classification of semiconductors.	15
	1.1.2 $A^L B_2^L C_4^V$ Ternary compounds	15
1.2	Band models of semiconductors.	20
1.3	Electrical conduction.	22
	1.3.1 Dc conductivity.	22
	1.3.2 Ac conductivity.	25
	1.3.2.1 Models for ac conduction.	30
	1.3.3 Dielectric properties.	37
	1.3.3.1 Dielectric polarization	37
	1.3.4 I-V characteristics	42
	1.3.5 Thermoelectric Power.	49
1.4	Optical properties of semiconductors.	50
	1.4.1 Mechanisms of optical absorption	51
	1.4.2 The absorption coefficient and the optical band gap.	52
1.5	Heterojunction	59
1.6	Photovoltaic of materials	64
1.7	Literature Review	69
	<u>Chapter II</u>	
_	erimental Techniques.	
2.1	Synthesis of bulk samples	77
	2.1.1 Description of the oscillatory furnace	78
	2.1.2 Powder samples preparation	79 - 0
2.2	1	79
2.3	Film thickness measurements	82

	2.3.1 Quartz crystal thickness monitor	82
	2.3.2 Interferometric method	83
2.4	Structural investigation of ZnIn ₂ Se ₄	86
	2.4.1 X-ray diffractometry (XRD) technique	86
	2.4.2 Energy dispersive X-ray analysis EDX method	87
	2.4.3 Field emission scanning electron	87
	microscope	
a =	2.4.4 Atomic force electron microscope	88
2.5	Optical measurements	89
	2.5.1 Film transmittance and reflectance	89
2.6	2.5.2 Determination of the optical constants	91
2.6	Electrical measurements	92
	2.6.1 Planar thin film samples preparation and measurements	92
	2.6.2 AC measurements sandwich ZnIn ₂ Se ₄ thin film samples	93
	2.6.3 Thermoelectric power measurements	96
2.7	-	97
	2.7.1 The device preparation and	97
	measurements	71
	2.7.2 Current density-voltage (I-V-T)	98
	measurements	70
	2.7.3 Capacitance-voltage(C-V)	100
	measurements	100
	Results and Discussions	
_	<u>Chapter III</u>	
	ctural Identification of ZnIn ₂ Se ₄ .	404
3.1	Structural identification	101
	3.1.1 Energy dispersive X-ray spectroscopy EDX	101
	3.1.2 Field emission scanning electron	102
	microscopy, FESEM	102
	3.1.3 Atomic force microscopy (AFM)	102
	3.1.4 X-ray diffraction study XRD for	105

ZnIn₂Se₄ Chapter IV Optical properties of $\overline{ZnIn_2Se_4thin}$ films Optical properties of as deposited ZnIn₂Se₄ 108 films 4.1.1 Transmittance and reflectance spectra 108 of as deposited ZnIn₂Se₄ films 4.1.2 Optical constants (n and k) of as 109 deposited ZnIn₂Se₄ films 4.1.3 Determination of energy gap of as 110 deposited ZnIn₂Se₄ films 4.1.4 Dispersion analysis of as deposited 111 ZnIn₂Se₄ films. 4.2 Influence of temperatures on the optical 113 properties of ZnIn₂Se₄ thin films 4.2.1 Transmittance and reflectance spectra of under annealed vacuum and 113 deposited at substrate temperature of ZnIn₂Se₄ films 4.2.2 Optical constants (n and k) of annealed under vacuum and as deposited films 115 of different thicknesses at substrate temperature ZnIn₂Se₄ films. 4.2.3 Energy gap of annealed under vacuum and as deposited films of different 117 thicknesses at substrate temperature for ZnIn₂Se₄ films. 4.2.4 Dispersion analysis of annealed under vacuum and as deposited films of 121 different thicknesses substrate temperature $ZnIn_2Se_4$ films. Chapter V

Electrical properties of ZnIn₂Se₄

5.1 DC electrical properties of ZnIn₂Se₄ thin film 125 5.1.1.DC electrical conductivity

5.1.3 Current density – Voltage (J-V) characteristics 5.2 Ac electrical properties of bulk ZnIn ₂ Se ₄ 5.2.1 pellet preparation 5.2.2 Ac conductivity 134 5.2.2 Ac conductivity 134 5.2.2.1 Temperature and frequency dependences of the ac 134 conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 5.2.3.1 Temperature and frequency dependences of the dielectric constant ₁ (). 5.2.3.2 Temperature and frequency dependences of the dielectric 139 loss ε ₂ 5.2.4 Complex impedance analysis. 143 5.3.1 Dielectric properties of ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	5.1.2 Thermoelectric Power Measureme	ent 126
5.2 Ac electrical properties of bulk ZnIn ₂ Se ₄ 5.2.1 pellet preparation 5.2.2 Ac conductivity 134 5.2.2.1 Temperature and frequency dependences of the ac conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 5.2.3.1 Temperature and frequency dependences of the dielectric constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		(J-V) 129
5.2.1 pellet preparation 5.2.2 Ac conductivity 5.2.2.1 Temperature and frequency dependences of the ac conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 5.2.3.1 Temperature and frequency dependences of the dielectric constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 152 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		101
5.2.2 Ac conductivity 5.2.2.1 Temperature and frequency dependences of the ac conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 138 5.2.3.1 Temperature and frequency dependences of the dielectric constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 147 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 147 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		
5.2.2.1 Temperature and frequency dependences of the ac conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 138 5.2.3.1 Temperature and frequency dependences of the dielectric constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 143 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 147 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 147 5.3.2 Real and imaginary parts of electric modulus 152 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 158 Heterojunction. 158		
dependences of the ac conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 138 5.2.3.1 Temperature and frequency dependences of the dielectric constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 143 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 147 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 147 5.3.2 Real and imaginary parts of electric modulus 152 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		
conductivity 5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 5.2.3.1 Temperature and frequency dependences of the dielectric constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		quency
5.2.3 Dielectric properties for bulk ZnIn ₂ Se ₄ 5.2.3.1 Temperature and frequency dependences of the dielectric constant ₁ (). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 5.3.4 Conductivity 5.3.5 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	dependences of the	e ac 134
5.2.3.1 Temperature and frequency dependences of the dielectric constant 1 (). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 5.3.4 Conductivity 5.3.5 Real and imaginary parts of electric modulus 5.3.6 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	conductivity	
dependences of the dielectric constant 1 (). 5.2.3.2 Temperature and frequency dependences of the dielectric loss ε2 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 152 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	5.2.3 Dielectric properties for bulk ZnIn	1_2Se_4 138
constant 1(). 5.2.3.2 Temperature and frequency dependences of the dielectric 139 loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 147 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 147 5.3.2 Real and imaginary parts of electric modulus 152. 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 158 Heterojunction.	5.2.3.1 Temperature and free	quency
5.2.3.2 Temperature and frequency dependences of the dielectric 139 loss ε ₂ 5.2.4 Complex impedance analysis. 143 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 147 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 147 5.3.2 Real and imaginary parts of electric modulus 152 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	dependences of the die	electric 138
dependences of the dielectric loss ε ₂ 5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 152 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	constant $_{1}(\)$.	
143 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 152 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	5.2.3.2 Temperature and free	quency
143 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 152 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	-	- •
5.2.4 Complex impedance analysis. 5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 152 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		
5.3 Ac electrical properties of ZnIn ₂ Se ₄ thin film 5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	-	143
5.3.1 Dielectric properties for ZnIn ₂ Se ₄ thin film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		_
film 5.3.2 Real and imaginary parts of electric modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		
modulus 5.3.3 AC conductivity 154 Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.		147
5.3.3 AC conductivity Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction.	<u> </u>	electric
Chapter VI Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction. 158		
Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction. 158	5.3.3 AC conductivity	154
Characterization of (Au/ZnIn ₂ Se ₄ /p-Si/Al) Heterojunction 6.1 Electrical characterization of ZnIn ₂ Se ₄ /Si Heterojunction. 158	Chapter VI	
Heterojunction. 158		ınction
Heterojunction. 158	6.1 Electrical characterization of ZnIn	₂ Se ₄ /Si
S .		158
6.2 C-V characteristic at room temperature. 168	6.2 C-V characteristic at room temperature.	168
6.3 Photovoltaic characterization 170	-	170

Conclusions	173
References.	178
Published papers	
Arabic Summary	

List of Figures

SUBJECT	Page
Fig.(1.1) a) Unit cell of the zinc blende structure Unit b) cell of the	16
chalcopyrite crystal structure (copper atoms in grey, indium atoms orange, sulfur atoms in light blue).; c) Unit	
cell of defect chalcopyrite ZnIn ₂ Se ₄ crystal structure (Zn	
atoms in green, In atoms in blue and Se atoms in black).	
Fig.(1.2) Band structure of ZnIn ₂ Se ₄	17
Fig.(1.3) Band models for amorphous semiconductors: (a)	21
following CFO; (b) following μ (E) at T = 0 K; (c)	
following $\mu(E)$ at $T > 0$ K; and d) following that of Mott and Davis.	
	24
Fig.(1.4) schematic illustration of the temperature dependence dc conductivity including four different conduction	24
mechanisms (a,b,c and d)	
Fig.(1.5) Complex impedance plot for the parallel RC	27
Fig.(1.6) Parameters for a CBH between states 1 and 2.	34
Fig.(1.7) Temperature dependence of the frequency exponent, s, for various models.	36
Fig.(1.8) Parallel plate capacitor (a) without any dielectric, (b)	38
filled with dielectric under short circuit condition	
(E = constant) and (c) filled with dielectric under open circuit condition (D = constant).	
Fig.(1.9) Bias field dependence of the dielectric constant of (a)	38
dielectric and (b) ferroelectric material.	
T: (4.40)TI C	44
Fig.(1.10) The frequency dependence of the real and imaginary parts of the dielectric constant in the presence of	41
interfacial, orientational, ionic, and electronic	
polarization mechanisms.	
Fig (1.11) (a) Cathoda to anoda notantial distribution in a	44
Fig.(1.11) (a) Cathode to anode potential distribution in a vacuum diode (i) in the absence of electron flow, (ii)	44
thermionic emission limited current flow (iii) space	
charge limited flow of electrons.	
(b) Potential distribution across a metal semiconductor contact, where the metal contact is	
maintained at zero-bias, (i) under applied forward	

SUBJECT	Page
bias, and (ii) reverse bias. The potential distribution across the metal-semiconductor contact is considered to be analogous to the potential close to the cathode in a vacuum diode, thus permitting SCLC flow.	
Fig.(1.12) Logarithmic dependence of current on voltage for (a) ideal SCLC conduction in an insulator, (b) trap-free insulator with thermally generated free carriers, (c) an insulator with shallow traps	46
(d) an insulator with deep-traps and thermal carriers.	
Fig.(1.13) Schematic of the typical behaviour of light passing through a thin film on a substrate	51
Fig.(1.14) The incoming radiation I _o results in reflectance R and transmittance T.	52
Fig.(1.15) Schematic diagram of a typical absorption edge in an amorphous semiconductor.	53
Fig.(1.16) Schematic illustration of semiconductor interband transitions: (a) direct transition and (b) indirect transition.	55
Fig (1.17) Energy band diagrams of p and n-type semiconductors before contact.	60
Fig (1.18) Energy band diagram of an abrupt p-n junction at equilibrium	61
Fig (1.19) Dashed lines represent the band diagram under forward bias of the junction.	62
Fig.(1.20) Schematic diagrams of a conventional p-n junction solar cell	65
Fig.(1.21) The Equivalent circuit of an ideal solar cell (full lines). Non-ideal components are shown by the dotted line.	65
Fig.(1.22) Graph of current versus voltage for photovoltaic devices. The figure shows how the device characteristics change upon illumination	68
Fig.(2.1) Phase diagram of the system ZnSe- In ₂ Se ₃	77
Fig. (2.2) Schematic representation for the oscillatory furnace.	89
Fig.(2.3) Thermal evaporating technique Fig.(2.4) Thermal evaporation process	81 82
Fig.(2.5) (a) Schematic diagram of the interferometer; (b)	85

SUBJECT	Page
Schematic diagram showing the optical set-up for	
film thickness measurements; (c) Fizeau fringes.	
Fig.(2.6) The Field Emission Scanning Electron Microscope (FESEM) photograph.	87
Fig.(2.7) Shows the used double beam spectrophotometer (JASCO model V-570 UV-Vis-NIR) apparatus.	89
Fig.(2.8) Schematic diagram showing the spectrophotometer.	90
Fig.(2.9) Measurements of film reflectance according to the reference (Al-mirror)	90
Fig.(2.10) Schematic representation of measuring configuration used for electrical measurements of ZnIn ₂ Se ₄ films in planner configuration.	92
 Fig.(2.11) Shows the ac electrical measurements system. Fig.(2.12) Schematic representation of measuring configuration used for electrical measurements of ZnIn₂Se₄ films in sandwich configuration. 	94 94
Fig.(2.13) Holder used for the thermoelectric power	97
measurmeants Fig.(2.14) Shows a schematic diagram for the arrangements of	98
Au/ZnIn ₂ Se ₄ /Si/Al heterojunction. Fig.(2.15) (a) Circuit for monitoring the I-V characteristics	99
using CRO. (b) Circuit for measuring the I-V	
characteristics point by point in dark and under	
illumination.	
Fig. (2.16) Photovoltaic heterojunction testing system.	99
Fig. (2.17) Simplified block diagram of model 410 C-V meter. Fig. (3.1) Energy dispersive X-ray spectrum of ZnIn ₂ Se ₄ thin film.	100 101
Fig (3.2) SEM image of ZnIn ₂ Se ₄ thin film of thickness 473	102
nm.	
Fig (3.3a&b) 2D and 3D images of AFM for as-deposited	103
Fig.(3.4a&b) 2D and 3D images of AFM for annealed film Fig.(3.5) XRD pattern of ZnIn ₂ Se ₄ in the powder form	104 106
Fig. (3.6) XRD pattern of ZnIn ₂ Se ₄ : asdeposited thin film at 300 K, and annealed thin films, of thickness1254	107

AVA V-0-	D
SUBJECT	Page
nm, under vacuum at different temperatures	400
Fig.(4.1) Spectral behavior of transmittance T, and reflectance	108
R for as deposited ZnIn ₂ Se ₄ thin films of different	
thicknesses.	
Fig.(4.2) Spectral behavior of reflective index n and absorption	109
index k for as deposited ZnIn ₂ Se ₄ thin films	
Fig.(4.3) Dependence of $(\alpha h v)^{1/2}$ on $h v$ for as deposited	110
ZnIn ₂ Se ₄ thin films	
Fig.(4.4) Dependence of $(\alpha h v)^2$ on $h v$ for as deposited ZnIn ₂ Se ₄	111
thin films	
Fig.(4.5) Plot of $1/(n^2-1)$ versus $(hv)^2$ of $ZnIn_2Se_4$ thin films for	112
as deposited at 300K	
Fig.(4.6) Plot of n ² versus ² for as deposited ZnIn ₂ Se ₄ thin	110
films	113
Fig.(4.7) Spectral behavior of transmittance T and reflectance R	
for as deposited thin film at 300K, and annealed	114
thin films of ZnIn ₂ Se ₄ , of thickness 1254nm, under	114
vacuum at different temperatures.	
Fig.(4.8) Spectral behavior of transmittance T and reflectance R	
for as deposited ZnIn ₂ Se ₄ thin films at substrate	114
temperature of 623K for different thicknesses.	114
Fig.(4.9) Spectral behavior of refractive index n of ZnIn ₂ Se ₄	115
thin film, with thickness 1254nm, for as deposited	113
at 300K and annealed in vacuum at different	
temperatures	
Fig.(4.10) Spectral behavior of absorption index k of ZnIn ₂ Se ₄	
thin film, with thickness 1254nm, for as deposited	116
at 300K annealed in vacuum at different	110
temperatures. Fig (4.11) Spectral behavior of refrective index n and	
Fig.(4.11) Spectral behavior of refractive index n and absorption index k for as deposited ZnIn ₂ Se ₄ thin	
films at substrate temperature of 623K.	11/
Fig.(4.12) Dependence of $(hv)^{1/2}$ on (hv) of $ZnIn_2Se_4$ thin	
films for as deposited annealed in vacuum at	118
different temperatures with thickness 1254nm.	
Fig.(4.13) Dependence of (hv) ² on (hv) of ZnIn ₂ Se ₄ thin film,	
with thickness1254nm, for as deposited at 300K and	
annealed in vacuum at different temperatures.	
Fig.(4.14) Variation of both direct E_g^d and indirect E_g^{ll} optical	119

SUBJECT	Page
band gaps of ZnIn ₂ Se ₄ thin films versus annealing	
temperature.	
Fig.(4.15) Dependence of $(hv)^{1/2}$ on (hv) for as deposited	
ZnIn ₂ Se ₄ thin films at substrate temperature of	
623K. Fig.(4.16) Dependence of (hv) ² on (hv) for as deposited	400
ZnIn ₂ Se ₄ thin films at substrate temperature of	
623K.	
Fig.(4.17) Plot of $1/(n^2-1)$ versus $(hv)^2$ of $ZnIn_2Se_4$ thin films,	121
with thickness 1254nm, for as deposited at 300K	
and annealed in vacuum at different temperatures.	
Fig.(4.18) Plot of n ² versus ² of ZnIn ₂ Se ₄ thin films, with	
thickness 1254nm, for as deposited at 300K and	
annealed in vacuum at different temperatures.	
Fig.(4.19) Plot of $1/(n^2-1)$ versus $(hv)^2$ for as deposited	
ZnIn ₂ Se ₄ thin films at substrate temperature of 623K.	
Fig.(4.20) Plot of n ² versus ² for as deposited ZnIn ₂ Se ₄ thin films at substrate temperature of 623K.	124
Fig.(5.1) Temperature dependence of DC electrical	125
conductivity (_{DC}) of ZnIn ₂ Se ₄ thin film.	120
Fig.(5.2) Seebeck coefficient (S) of ZnIn ₂ Se ₄ thin film as a	127
function of temperature.	12/
Fig.(5.3) The variation of Seebeck coefficient (S) and DC	127
electrical conductivity (_{DC}) against 1000/T.	14/
Fig.(5.4) Temperature dependence of mobility (μ) of ZnIn ₂ Se ₄	128
thin film.; inset Fig.: Plot of ln μ against 1000/T.	120
Fig.(5.5) J-V characteristics of Al/ ZnIn ₂ Se ₄ /Al at different	129
temperatures.	149
Fig.(5.6) Plot of ln against 1000/T.	131
5	
Fig.(5.7) Temperature dependence of J-V characteristics for	132
Al/ ZnIn ₂ Se ₄ /Al at different voltages.	
Fig.(5.8) Frequency dependence of the ac conductivity $\uparrow_{ac}(\tilde{S})$	135
of bulk ZnIn ₂ Se ₄ at different temperatures.	
Fig.(5.9) Temperature dependence of the average value of the	136
frequency exponent $\frac{1}{s}$ of bulk $ZnIn_2Se_4$.	

	SUBJECT	Page
Fig.(5.10)	Temperature dependence of the ac conductivity	137
	$\dagger_{ac}(\check{S})$ of bulk ZnIn ₂ Se ₄ at different frequencies,	
	the inset figure represents the variation of ac	
	activation energy (E_{ac}) with temperature.	
Fig. (5.11)	Frequency dependence of the dielectric constant V_1	138
	of bulk ZnIn ₂ Se ₄ at different temperatures.	
Fig. (5.12)	Temperature dependence of the dielectric constant	139
	V ₁ of bulk ZnIn ₂ Se ₄ at different frequencies.	
Fig.(5.13)	Frequency dependence of the dielectric loss V_2 of	140
	bulk ZnIn ₂ Se ₄ at different temperatures.	
Fig.(5.14)	Plot of lnV ₂ versus ln at different temperatures of	141
	bulk ZnIn ₂ Se ₄ .	
Fig.(5.15)	Temperature dependence of the experimental mean	142
	value of m of bulk ZnIn ₂ Se ₄ .	
Fig. (5.16)	Temperature dependence of the dielectric loss V_2 of	142
	bulk ZnIn ₂ Se ₄ at different frequencies.	
Fig. (5.17)	Frequency dependence of real part, Z ₁ of complex	143
	impedance of bulk ZnIn ₂ Se ₄ at different	
E! - (5 10)	temperatures.	
F1g.(5.18)	Frequency dependence of imaginary part, Z ₂ of	144
	complex impedance of bulk ZnIn ₂ Se ₄ at different temperatures.	
Fig (5 10)	Plot of $\ln \tau$ versus 1000/T.	145
F1g.(5.20)	Complex impedance spectrum (Z_2 versus Z_1) of bulk ZnIn2Se4 at different temperatures	146
Fig (5.21)	Frequency dependence of the dielectric constant V ₁	1 10
Fig.(3.21)	of $ZnIn_2Se_4$ thin film at different temperatures.	148
Fig.(5.22)	Temperature dependence of the dielectric constant	148
	V ₁ of ZnIn ₂ Se ₄ thin film at different frequencies.	
Fig.(5.23)	Frequency dependence of the dielectric loss V ₂ of	150
	ZnIn ₂ Se ₄ thin film at different temperatures.	
Fig.(5.24)	Temperature dependence of the dielectric constant	150
- '	V ₂ of ZnIn ₂ Se ₄ thin film at different frequencies.	