Addition of Clopidogrel to Aspirin and Fibrinolytic therapy for ST-Segment Elevation Myocardial Infarction

Thesis

Submitted in partial fulfillment of Master degree in Cardiology

By
Serag El-Din Farouk Ali Raslan
M. B. B. Ch

Under supervision of

Dr. Ahmed Abdel Rahman Sharaf El-Din Professor of Cardiology Ain Shams University

> Dr. Ahmed A. Khashaba Assistant professor of Cardiology Ain Shams University

> Dr. Walaa Adel Assistant professor of Cardiology Ain Shams University

> > Faculty of Medicine Ain Shams University

بسم الله الرحمن الرحيم (اهرأ و ربك الأكرو, الذي علم بالعلم, علم الانسان ما لو يعلم.) حدق الله العظيم

سورة العلق, الايات (3, 4, 5)

Acknowledgment

First of all, all thanks to **Allah** who gave me the ability to fulfill this work.

It gives me a great pleasure to express my deepest appreciation to my supervisors in Ain Shams Faculty of medicine:

- Dr. Ahmed Abdel Rahman, professor of cardiovascular medicine.
- Dr. Ahmed Khashaba, A. Prof. of cardiovascular medicine.
- Dr. Wala Adel, A. Prof. of cardiology,

For their encouragement and kind supervision to complete this work.

I am also deeply indebted for **my family** for their support, patience and encouragement.

Contents

	Page
List of abbreviations	iv
List of tables	v
List of figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	4
• Chapter 1: Myocardial infarction	4
• Chapter 2: Thrombolytic therapy	12
• Chapter 3: platelet role in infarction	31
• Chapter 4: Clopidogrel	36
Patients and Methods	44
Results	54
Discussion	62
Conclusion	67
References	68
Protocol	77
English summary.	83
Master table.	87
Case reports:	95
Arabic Summary	79

List of abbreviations

ACC	American College Of Cardiology	MBG	Myocardial blush grade	
ADP	Adenosine Diphosphate	MI	Myocardial infarction	
AHA	American Heart Association	NSTEMI	Non ST elevation myocardial infarction	
СК	Creatine kinase	NO	Nitric Oxide	
СК-МВ	MB fraction of Creatine Kinase	P value	Significance	
CRP	C-Reactive Protein	PCI	Percutaneous intervention	
DM	Diabetes mellitus	PGI ₂	Prostaglandin I-2	
ECG	Electrocardiogram	PTCA	Percutaneous transluminal coronary angioplasty	
FH	Family history	RCA	Right coronary artery	
GP	Glycoprotein	rt-PA	Recombinant tissue plasminogen activator	
HTN	Hypertension	SK	Streptokinase	
IRA	Infarct-related artery	STEMI	ST segment elevation myocardial infarction	
LAD	Left anterior descending artery	TIMI	Thrombolysis in myocardial infarction	
LCX	Left circumflex artery	TIMI FC	TIMI frame count	
LIPIDM	Dyslipidemia	TNK	Tenecteplase	
LMWH	Low molecular weight heparin	T-PA	Tissue plasminogen activator	
MACE	Major adverse cardiac events	UFH	Unfractionated heparin	

List of tables

Table No	Subject	Page
Table 1	Assessment of reperfusion options for patients with STEMI	13
Table 2	Comparative features of frequently used fibrinolytic therapies	17
Table 3	Relation between TMII flow grade of IRA and the 30 days mortality rate	19
Table 4	TMI flow grading system classification	20
Table 5	Myocardial blush grading assessment.	27
Table 6	TIMI flow grade classification.	47
Table 7	Assessment of myocardial blush grade	51
Table 8	Patients Characteristics & risk factors.	54
Table 9	Comparison of infarction Characteristic between the two groups	56
Table 10	comparison between both groups regarding success of reperfusion	58
Table 11	Comparison the incidence of bleeding or MACE up to 30 days follow up	61

List of figures

Figure No	Subject	page
Figure 1	ECG of transmural infarction showing ST segment elevation	6
Figure 2	Kinetic profile of cardiac markers following STEMI	7
Figure 3	Atherosclerotic plaque rupture	8
Figure 4	Disrupted endothelial lining of a coronary artery & platelet aggregation	9
Figure 5	PCI versus lysis with fibrin-specific agents	12
Figure 6	Fibrinolytic Therapy Trialists' Collaborative Group.	15
Figure 7	Definitions of first frame used for TIMI frame counting	21
Figure 8	Anatomic land mark used for TIMI-FC in LAD	22
Figure 9	Anatomic landmark used for TIMI-FC in LCX	22
Figure 10	Anatomic landmark used for TIMI-FC in RCA	23
Figure 11	A resting platelet versus an activated one	31
Figure 12	Healthy arterial endothelium	32
Figure 13	Steps of platelet activation and thrombus formation	33
Figure14	The structure of Clopidogrel	36
Figure 15	ARMYDA-2 study primary end points	40
Figure 16	Results from CLARITY TIMI-28	42
Figure 17	Definitions of first frame used for TIMI frame counting	49
Figure 18	Anatomic land mark used for TIMI-FC in LAD	49
Figure 19	Anatomic landmark used for TIMI-FC in LCX	50
Figure 20	Anatomic landmark used for TIMI-FC in RCA	50
Figure 21	Comparison of the two groups regarding the mean of age	54
Figure 22	Comparison of the two groups regarding Characteristic & risk factors	55
Figure 23	Comparison of the site of infarction	56
Figure 24	Comparison of infarction related artery in both groups	57
Figure 25	Comparison of both groups regarding STE before & after SK	58
Figure 26	Comparison of the two groups regarding the percentage of ST regression.	58
Figure 27	Comparison regarding successful distal perfusion after therapy.	59
Figure 28	Comparison regarding the mean of TIMI FC after therapy	59
Figure 29	Comparing the myocardial blush border grade in infarct related zone	60
Figure 30	Incidence of MACE & bleeding in both groups	61

Introduction

The benefit of fibrinolytic therapy for myocardial infarction with ST-segment elevation is limited by inadequate reperfusion of the infarct-related artery in a sizable proportion of patients. Initial reperfusion fails to occur in approximately 20 percent of patients ⁽¹⁻³⁾ and is associated with a doubling of mortality rates. ⁽⁴⁾ The artery becomes re-occluded in an additional 5 to 8 percent of patients during their hospitalization, and this event is associated with an increase in mortality rates by a factor of nearly three. ⁽⁵⁾

Platelet activation and aggregation play a key role in initiating and propagating coronary-artery thrombosis. An important paradox associated with the use of fibrinolytic therapy is its procoagulant potential, mainly through the release of a pool of trapped thrombin during the course of clot lysis. (6-8) However, conflicting data exist concerning the capacity of fibrinolytic agents to activate platelets directly. (6,9)

Regardless of the controversial evidence on this subject, exposure of the clot bound thrombin during fibrinolysis is an extremely potent platelet agonist, promoting platelet activation and aggregation.(10) Consequently, the above mentioned hypercoagulative state associated with AMI itself, as well as the procoagulant effect of fibrinolytic agents (the "thrombolytic paradox"), make the use of adjunctive antithrombin and antiplatelet therapies absolutely mandatory for the achievement of satisfactory and permanent myocardial reperfusion.⁽¹⁰⁾

In the Second International Study of Infarct Survival, conducted in patients with acute myocardial infarction, aspirin reduced the odds of death from vascular causes by 23 percent and the odds of reinfarction by 46 percent. (11) Aspirin has also been shown to reduce the rate of angiographic re-occlusion by 22 percent, as compared with placebo. (12)

Clopidogrel is an adenosine diphosphate receptor antagonist, a class of oral antiplatelet agents that block the P2Y component of the adenosine diphosphate receptor and thus inhibit the activation and aggregation of platelets. (13) Clopidogrel has been shown to prevent death and ischemic complications in patients with symptomatic atherosclerotic disease, patients who have undergone percutaneous coronary intervention, and patients with unstable angina or myocardial infarction without ST-segment elevation.

A major remaining question is whether the addition of clopidogrel is beneficial in patients who have myocardial infarction with ST-segment elevation (14-16) and who are receiving a standard fibrinolytic regimen, including aspirin.

Aim of the Work

The aim of this study will be to assess the benefit of adding clopidogrel to aspirin and fibrinolytic therapy for those patients who has myocardial infarction with ST-segment elevation.

The primary end point will be the patency of the infarct-related artery assessed by coronary angiography 3 to 8 days after the infarction.

The secondary end-points will be:

- 1. The 30-day MACE (recurrent angina, reinfarction, or death) at 30 days.
- 2. The incidence of major bleeding.

Chapter (1)

Myocardial Infarction

Epidemiology:

Coronary heart disease is the leading cause of death Worldwide, with myocardial infarction a common manifestation of this disease.

In 2006, approximately 1.2 million Americans sustained a myocardial infarction. ⁽¹⁷⁾ Of these, one quarter to one third had a myocardial infarction with ST-segment elevation (STEMI). ^(18, 19)

Of all patients having a myocardial infarction, 25 to 35% will die before receiving medical attention, most often from ventricular fibrillation. (20)

The prognosis is considerably better and has improved over the years: inhospital mortality rates fell from 11.2% in 1990 to 9.4% in 1999. ⁽¹⁸⁾ Most of the decline is due to decreasing mortality rates among patients with myocardial infarction with ST-segment elevation, ⁽¹⁹⁾ as a consequence of improvements in initial therapy, including fibrinolysis and PCI. In an analysis by the National Registry of Myocardial Infarction, the rate of inhospital mortality was 5.7% among those receiving reperfusion therapies, as compared with 14.8% among those who were eligible for but did not receive such therapy. ⁽²¹⁾

Definition:

Myocardial infarction can be defined from a number of different perspectives related to clinical, electrocardiographic (ECG), biochemical and pathologic characteristics. (22) It is accepted that the term myocardial infarction reflects death of cardiac myocytes caused by prolonged ischemia.

Clinical presentation of acute myocardial infarction (22)

The typical symptoms of acute myocardial infarction include severe chest, epigastric, or arm pain/discomfort with exertion or at rest. Usually lasting for more than 20 minutes and is not relieved by rest or nitrates.

The discomfort may develop in the central or left chest and then radiate to the arm, jaw, back or shoulder.

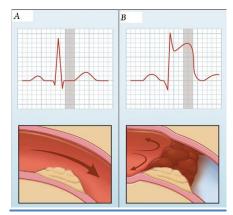
The discomfort is usually not sharp or highly localized and may be associated with dyspnea, diaphoresis, nausea, vomiting or light-headedness.

The discomfort is not affected by moving the muscles of the region where the discomfort localized, nor is it worsened by deep inspiration.

The discomfort is not positional in nature. Symptoms can also include unexplained nausea and vomiting, persistent shortness of breath secondary to left ventricular failure and unexplained weakness, dizziness, lightheadedness or syncope, or a combination of these.

Atypical presentation when the discomfort develops in the epigastrium (often confused with indigestion), arm, shoulder, wrist, jaw or back, without occurring in the chest.

Acute MI which occur without chest pain I knows as silent infarction, it is mostly limited to the elderly and diabetic patients.


Diagnosis of acute Myocardial infarction.

ECG

The ECG may show signs of myocardial ischemia, specifically ST and T changes, as well as signs of myocardial necrosis, specifically changes in the QRS pattern. A working definition for acute *evolving* myocardial infarction in the presence of clinically appropriate symptoms has been established as⁽²²⁾

- (1) Patients with ST-segment elevation in at least 2 contagious leads, i.e. new ST-segment elevation at the J point with the cut-off points measuring ≥0.2 mV in V1 through V3 and ≥0.1 mV in other leads. (STEMI), or
- (2) Patients without ST-segment elevation, i.e. ST-segment depression or T wave abnormalities. Non as non St Elevation myocardial infarction (NSTEMI).

In addition, new-onset left bundle branch block in the settings of symptoms consistent with acute MI may indicate a large, anterior wall acute infarction. (23).

<u>Figure 1:</u> Total occlusion of coronary artery producing transmural ischemia and ST segment elevation in the corresponding ECG lead.

Biomarkers (22)

- The preferred cardiac markers are troponin I or T because of their specificity
- CK-MB has lower specificity than troponins T and I, but may be used
- Myoglobin or CK-MB isoforms should be considered for rapid diagnosis
- Total CK, aspartate transaminase (serum glutamate oxaloacetate transaminase) and LDH have low specificity and are less satisfactory.
- Elevation of troponin or CK-MB is defined as a value exceeding the 99th centile of a reference control group
- Sampling of troponins or CK-MB should be done at presentation, at 6–9 hours, and at 12–24 hours.

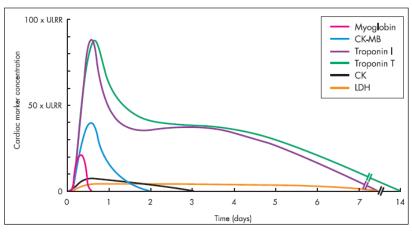
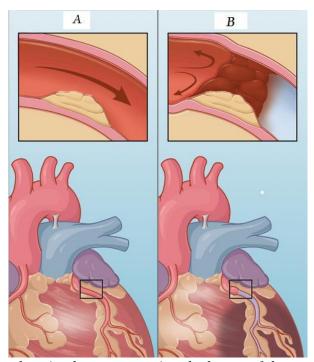


Figure Kinetic profiles of cardiac markers following ST elevation myocardial infarction. These profiles are schematic and do not differentiate between patients with early reperfusion and those with persistent occlusion of the infarct related artery. When there is early reperfusion, cardiac marker concentrations rise more rapidly, peak earlier and at a higher value, and return to the reference range more rapidly.

<u>Figure 2:</u> Kinetic profile of cardiac markers following ST elevation myocardial infarction

Modified from: The Joint European Society of Cardiology/American College of Cardiology Committee. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology for the redefinition of myocardial infarction. *Eur Heart J* 2000; **21**:1502–13.


Pathogenesis of STEMI

The ST segment elevation Myocardial infarction refers to that kind of infarction in which the ischemic changes involve the whole thickness of the myocardial muscle, with the characteristic ST-T changes. Appearance of Q waves later on indicates myocardial necrosis.

Coronary arterial occlusion due to plaque rupture and superimposed thrombosis is the cause of most cases of STEMI. (24)

Atherosclerotic Plaque:

The pathogenesis of coronary atherosclerosis is multifactorial. (25) Broadly, endothelial injury and dysfunction result in the adhesion and transmigration of leukocytes from the circulation into the arterial intima as well as the migration of smooth-muscle cells from the media into the intima, thus initiating the formation of an atheroma or atherosclerotic plaque. (25, 26)

Figure 3: (A) atherosclerotic plaque narrowing the lumen of the coronary artery without obstruction, (B) Plaque rupture and thrombus formation with total occlusion.