EFFECT OF WATER STRESS ON WHEAT CROP USING NEUTRON SCATTERING TECHNIQUE

By

AMINA SAYED SAAD MOSTAFA

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2011.

A Thesis Submitted in Partial Fulfillment Of

The Requirements for the Degree of

MASTER OF SCIENCE in

Agricultural Sciences (Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

EFFECT OF WATER STRESS ON WHEAT CROP USING NEUTRON SCATTERING TECHNIQUE

By

AMINA SAYED SAAD MOSTAFA

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2011.

This Thesis for M.Sc. degree has been approved by:

Dr. Mohamed Abdel Wahab Kassem Prof. of Agricultural Engineering, Faculty of Agriculture, Cairo University.)
Dr. Hani Saber Saudy Prof. of Agronomy, Faculty of Agriculture, Ain Shams University.	
Dr. Khaled Faran El-Bagoury Associate Prof. of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.	
Dr. Mahmoud Mohamed Hegazi Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture Ain Shams University.	,

Date of Examination: 26 / 12 /2017

EFFECT OF WATER STRESS ON WHEAT CROP USING NEUTRON SCATTERING TECHNIQUE

By

AMINA SAYED SAAD MOSTAFA

B.Sc. Agric. Sc. (Agric. Engineering), Ain Shams University, 2011.

Under the supervision of:

Dr. Mahmoud Mohamed Hegazi

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Khaled Faran El-Bagoury

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Mohamed Abdelaal Ahmed Salama

Lecturer of Soil Science, Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority.

ABSTRACT

Amina Sayed Saad Mostafa: Effect of Water Stress on Wheat Crop Using Neutron Scattering Technique. Unpublished M.Sc. Thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2017.

A field experiment was conducted at the Experimental Farm of Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Egypt. The objectives of this study is to estimate water stress coefficient (K_s) and optimize the irrigation requirements of wheat crop (Triticum Astivum L.) variety Misr2 cultivated in semi-arid climate conditions under trickle irrigation system in sandy soil. The field experiment was conducted under four different irrigation water regimes, the treatments T₂, T₃ and T₄ received 80, 60 and 40%, respectively, of the irrigation applied in treatment T₁ which was 100% form recommended ET_c. The effect of the four water levels on wheat crop was investigated during the growing season where soil moisture content and depletion were monitored by neutron moisture meter. The results of this study showed that the crop evapotranspiration (ET_c) were 509.2, 407.4, 305.5 and 203.7 mm/season, while the total actual evapotranspiration (ET_a) were 441.90, 353.60, 262.20 and 179.10 mm/season for 100, 80, 60 and 40% treatments, respectively. Water stress coefficient (K_s), water use efficiency (WUE) and wheat yield were estimated and evaluated for all irrigation treatments. The maximum crop yield (4.48 tons ha⁻¹) presented at 0.92 (K_s) of T₁ with low value of WUE (0.88 kg m⁻³), while the highest effect of K_s occurred in T₄ (0.74) with the lowest yield value (3.14 tons ha⁻¹) and highest value of WUE (1.54 kg m⁻³).

Keywords: Evapotranspiration, Water stress coefficient, Neutron moisture meter, Wheat crop, Water use efficiency.

ACKNOWLEDGEMENT

First and foremost, I thank **Allah**, on all his graces, and his supported for my work until complete successfully.

I would like to express my deep thanks to my honorable professors: **Prof. Dr. Mahmoud Mohamed Hegazi**, Professor of Agriculture Engineering, Faculty of Agriculture, Ain Shams University and **Dr. Khaled Faran El-Bagoury**, Associate Professor of Agriculture Engineering, Faculty of Agriculture, Ain Shams University and **Dr. Mohamed Abdelaal Ahmed Salama**, Lecturer of Soil Science, Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, for valuable advices throughout this work, suggesting the point of research, direct supervision guidance, continuous encouragement, valuable comments and discussion, editing the manuscript, their insight on both the professional and personal levels which gave me the greatest help to accomplish this study.

My sincere thanks also extended to **Prof. Dr. Mohamed Abdelmoniem Mohamed,** Professor Soil Science, and **Dr. Kholood Mahmoud Mohamed Youssef,** Lecturer of Soil Science, Department of Soil and Water Research, Atomic Energy Authority, for kind help, valuable advices, effort and guidance throughout this work.

Also my parents, my husband and my sisters that have given me their obvious support, patience, loving encouragement and love throughout my life for which my simple expression of thanks does not suffice.

Finally, I am sincerely thankful to all staff members of Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. Many thanks to all staff members of Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, for their valuable help during carried out the experiments of this work and to give me the opportunity and facilities to complete my MSC Thesis.

CONTENTS

Item	Page
LIST OF TABLES	IV
LIST OF FIGUERS	${f V}$
LIST OF ABBREVIATIONS	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Water scarcity in Egypt	3
2.2. Prospective needs for water resources	5
2.3. Water management	5
2.4. Crop water requirements	7
2.4.1. Evapotranspiration	8
2.4.2. Reference evapotranspiration (ET _o)	11
2.4.3. Crop coefficient (K _c)	12
2.4.4. Crop evapotranspiration under standard conditions (ET _c)	13
2.4.5. Crop evapotranspiration under non-standard conditions (ET _{c adj})	15
2.4.6. Water stress coefficient (K_s)	15
2.4.7. Soil water balance	16
2.4.8. Determination of actual evapotranspiration (ET _a)	17
2.5. Neutron scattering method	18
2.6. Irrigation scheduling	20
2.7. Trickle irrigation system	21
2.8. Water stress	23
2.8.1. Effect of water stress on wheat crop	25
2.9. Wheat as strategically crop	26
2.9.1. Water requirements of wheat crop	28
2.9.2. Water use efficiency (WUE), irrigation water use efficiency (IWUE) and water productivity (WP)	30

3. MATERIALS AND METHODS	33
3.1. Experimental site	33
3.2. Soil and water analysis	33
3.2.1. Physical analysis of soil	33
3.2.2. Chemical analysis of soil	34
3.2.3. Chemical analysis of irrigation water	35
3.3. Meteorological data	36
3.4. Water application regimes	38
3.5. Experimental design and statistical analysis	38
3.6. Irrigation scheduling	39
3.7. The cultivated crop	39
3.8. The fertilization strategy	39
3.9. Irrigation system	40
3.9.1. Hydraulic evaluation of the used system	40
3.9.1.1. Emitter flow rate versus pressure	40
3.9.1.2. Emission uniformity (EU) of the trickle irrigation system	41
3.10. Crop water requirements	41
3.10.1. Reference evapotranspiration (ET _o)	41
3.10.2. Crop coefficient (K _c)	42
3.10.3. Crop evapotranspiration (ET _c)	44
3.10.3.1. Crop evapotranspiration under standard conditions (ET _c)	44
3.10.3.2. Crop evapotranspiration under non standard conditions (ET _{c adj})	44
3.10.4. Water stress coefficient (K _s)	45
3.10.5. Soil water balance	46
3.10.6. Actual evapotranspiration (ET _a)	47
3.11. Field calibration curves from 30 to 90 cm depth of neutron moisture meter	47

3.12. Water use efficiency (WUE), irrigation water use efficiency (IWUE) and water productivity (WP)	50
3.13. Wheat crop traits assessment	50
4. RESULTS AND DISCUSSION	52
4.1. Emission uniformity (EU) of the trickle irrigation system	52
4.2. Emitter flow rate versus pressure	53
4.3. Reference evapotranspiration (ET _o)	53
4.4. Crop coefficient (K _c)	54
4.5. Crop evapotranspiration under standard conditions (ET _c)	56
4.6. Water stress coefficient (K _s)	58
4.6.1. Effect of water stress on soil characteristics after harvesting	59
4.7. Actual evapotranspiration (ET _a)	61
4.8. Crop evapotranspiration under non standard conditions (ET _{c adj})	63
4.9. Wheat yield	65
4.10. Water use efficiency (WUE), irrigation water use efficiency (IWUE) and water productivity (WP)	66
4.11. Measurements of plant high for wheat crop during growing season	68
4.12. Measurements of wheat crop after harvest	68
5. SUMMARY	70
6. CONCLUSION	73
7. REFERENCES	75
8. APPENDIX	95
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1.	Some physical characteristics of the experimental soil	35
2.	Some chemical characteristics of soil and irrigation water	36
3.	Weather data of Inshas area during the growing season of (2014-2105)	37
4.	Values of recommended crop coefficient K_c for all growth stages of wheat crop	44
5.	Values of recommended and estimated crop coefficient $K_{\rm c}$ for all growth stages of wheat crop during the growing season (2014 - 2015)	56
6.	Values of reference and crop evapotranspiration for all growth stages of wheat crop during the growing season (2014 - 2015)	57
7.	Effect of water stress on some soil chemical characteristics for wheat crop after harvesting season of (2014-2105)	60
8.	Values of actual evapotranspiration (ET_a) of wheat crop for all growth stages during the growing season (2014 - 2015)	62
9.	The values of crop evapotranspiration (ET $_c$) and adjustable crop evapotranspiration (ET $_c$ adj) of wheat crop for all growth stages	
	during the growing season (2014 - 2015).	64
10.	Measurements of plant high (cm) for wheat crop during growing season (2014-2015)	68
11.	Measurements of some characteristics for wheat crop after harvest	69

LIST OF FIGURES

Figure		Page
1.	Layout of wheat crop experiment, irrigation treatments and	
	irrigation system	39
2.	Linear regression equations of neutron calibration curves for	
	the soil moisture content at different soil depths	50
3.	Discharger of emitters to evaluate EU of the trickle irrigation	
	system	52
4.	The relation between the pressure head (m) and the emitter	
	discharge (l h ⁻¹).	53
5.	Values of reference evapotranspiration (ET _o) for all growth	
	stages of wheat season (2014 - 2015)	54
6.	Recommended and estimated values of crop coefficient (K _c)	
	under different growth stages for wheat crop	55
7.	Water stress coefficient (Ks) under different growth stages for	
	wheat crop	58
8.	Wheat yield as affected by different irrigation water regimes	65
9.	Water use efficiency (WUE)), irrigation water use efficiency	
	(IWUE) and water productivity (WP) of wheat crop as affected	
	by different irrigation water regimes	67