

Ain Shams University Faculty of Engineering Electronics and Communications Department

Layout Automation of Analog Integrated Circuits

A thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Electrical Engineering

Submitted by

Aya Mohamed Abdallah Fadl Mohamed B.Sc. of Electrical Engineering Electronics and Communications Department Ain Shams University, 2011

Supervised by

Prof. Mohamed Amin Dessouky
Dr. Hazem Said Ahmed
Cairo, 2017

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Layout Automation of Analog Integrated Circuits

by

Aya Mohamed Abdallah Fadl Mohamed

Bachelor of Science in Electrical Engineering (Electronics Engineering and Electrical Communications) Faculty of Engineering, Ain Shams University, 2011

EXAMINERS' COMMITTEE

Name and Affiliation	Signature
Prof. El Sayed Mostafa Saad	
Electronics and Communications Engineering Dept.	
Faculty of Engineering, Helwan University.	
Prof. Hani Fikry Ragaai	
Electronics and Communications Engineering Dept.	
Faculty of Engineering, Ain Shams University.	
Prof. Mohamed Amin Dessouky	
Electronics and Communications Engineering Dept.	
Faculty of Engineering, Ain Shams University.	

Date: 15 / 12 / 2017

Statement

This dissertation is submitted to Ain Shams University for the degree of

Master of Science in Electrical Engineering (Electronics and Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any other university or institution.

Name: Aya Mohamed Abdallah Fadl Mohamed

Date: / / 2017

Layout Automation of Analog Integrated Circuits

Aya Mohamed Abdallah Fadl Mohamed

Masters of Science Dissertation Electronics and Communications Department Faculty of Engineering - Ain Shams University

ABSTRACT

In recent years, Systems On Chip has advanced in technology the thing that has added more complexity to cope with where there are contentiously added blocks and functionalities that is required to be integrated in one chip. Most of the functions are implemented using digital circuitry. However the interface with the real world makes an analog part a necessity. In terms of chip area, the analog part of the circuitry is only almost 20% of the design, but still the most expensive part of the design process from the aspect of effort and time needed for closure. The progress in digital design Computer-Aidded-Design CAD tools has given the digital design engineers the flexibility to accommodate with the increased size and functionality demanded from the digital circuitry, on the other hand the analog part is still suffering from the shortage of (CAD) tools to help the designers out for completion of analog part with less effort and time. There have been different analog design automation approaches attempted but, still no generic automation methodology can be adopted as the problem is much less systematic and has many variability that must be accounted for.

Retargeting has been adopted to take advantage of the new technologies benefits that is continuously progressing and serving the continuous advancing needed requirements, where the qualified analog circuits that has passed post fabrication testing and silicon proven are re-used with advanced technologies. This thesis presents an efficient methodology for automatic analog layout process retargeting, which fits in the current design flow. It relies on two concepts: First, the reuse of source layout heuristics and matching considerations through device placement constraint extraction. This allows an automatic layout reconstruction using foundry Parametric Cells (PCells) of the target process, as in the current

design flow. Second, feeding those constraints to an analog layout automatic placer based on Satisfiability Modulo Theories (SMT). Besides conserving the source layout topology, this also allows generating multiple layout options in case of large changes of device dimensions and/or requiring a new aspect ratio in the target process. Two test cases of a Miller-OTA and a two-stage comparator demonstrate the proposed flow.

Key words: Analog Layout, Placement, Automation, SMT, Retargeting.

Summary

This thesis discusses an overview on the analog layout design challenges in deep sub-micron processes and the impact of time and effort needed to accomplish retargeted analog circuit. State of the art in analog layout placement retargeting automation flows is presented, as well as an automated analog layout placement retargeting flow based on Satisfiability Modulo Theories (SMT) are proposed. Finally, real design examples are used to demonstrate the flow proposal.

This thesis is divided into five chapters including lists of contents, tables and figures as well as list of references and one appendix:

Chapter 1

This chapter provides an overview on the analog layout retargeting challenges. Motivation, objective and contributions of this work are illustrated. Also, the organization of the thesis is highlighted.

Chapter 2

This chapter discusses the analog design flow as well as analog design retargeting. State of the art is discussed and finally the SMT based analog placer that has been employed in this work has been discussed.

Chapter 3

An analog layout retargeting placement flow based on Satisfiability Modulo Theories analog placer is proposed. The flow considerations, a step by step introduction to the proposed flow and the flow architecture are discussed.

Chapter 4

This chapter provides a demonstration of layout placements obtained for the two real designs examples using the proposed flow. The results and final achieved layouts are shown as well as comparison to previous flows performance. Finally, a discussion on the results and highlights on the benefits of the proposed flow are discussed.

Chapter 5

This chapter concludes the work presented in this thesis, and highlights the proposed future work.

ACKNOWLEDGMENT

All gratitude to ALLAH

Many thanks my supervisor Prof. Mohamed Dessouky. and Dr.Hazem Said. for their insightful thoughts and helpful discussions.

I would like to express my gratitude to Prof. Mohamed Dessouky for his great support, guidance and hours of fruitful discussions.

Many thanks to my colleagues and friends who helped me during the work on this thesis, thanks a lot Dr. Sherif Sief.

Finally, I am all thankful to my family and friends whom supported me all the way to accomplish this work.

Contents

Li	st of 1	Figures	VI	Ι
Li	st of '	Tables	VII	Ί
No	omen	clature	2	X
1	Intr	roduction		1
	1.1	Motivation		1
	1.2	Scope and Contributions		2
	1.3	Thesis Organization		4
2	Bac	kground		6
	2.1	Introduction		6
	2.2	Analog Layout		6
		2.2.1 Analog layout effects		8
		2.2.2 Analog layout Constraints		9
		2.2.3 Analog Design Retargeting Flow		1
	2.3	State of the art		
		2.3.1 Template based retargeting		
		2.3.1.1 Parasitic aware template based retarg		
		ing		1
		2.3.2 Other Techniques		
	2.4	<u>=</u>		
		2.4.1 Analog Placer Constraints		
	2.5	Summary		
3	Pro	posed Analog Layout Placement Re-targeting Flow	3	1
		Introduction	3	1

CONTENTS

	3.2	Overv	iew		32
	3.3	The pr	oposed flo	ow in depth	35
		3.3.1		Constraint Extractor	
			3.3.1.1	Stage 1 parsing the source layout prop-	
				erties/parameters data	38
			3.3.1.2	Stage 2 Analog layout constraints ex-	
				traction	39
			3.3.1.3	Stage 3 Parsing schematic driven target	
				layout properties/parameters data	58
			3.3.1.4	Stage 4 Comparing the source layout	
				and schematic driven target layout PCells	
				parameters/properties	59
			3.3.1.5	Stage 5 Printing intermediate SKILL and	
				txt files	
		3.3.2		ation of Target Cells	
		3.3.3	_	Placer	
			3.3.3.1	C	
			3.3.3.2	1 1 1	
			3.3.3.3	8 8	
		3.3.4		ation	
	3.4	Summ	ary		72
4	Test	Cases			74
	4.1		uction		
	4.2				
	4.3		•		
	4.4	_		orevious work	
	4.5	_	_		
5	Con	clusion	and Futu	re Work	89
	5.1	Concl	usion		89
	5.2	Future	Work		89
Pι	ıblica	tions			91
Re	eferen	ices			92
Αı	opend	lix			96

List of Figures

2.1	Analog design flow [https://www.slideshare.net/slpinjare/anal	log-
	design-cit-f]	8
2.2	Analog layout placement constraints 1	.10
2.3	Analog layout placement constraints 2	.11
2.4	Analog design retargeting flow	13
2.5	CMP process [27]	.19
2.6	Flow proposed in [27]	.19
2.7	Illustration of triangulation to take down the correlation	
	between placement and routing [13]. (a) Existing lay-	
	out with triangles at routing channel. (b) Migrated layout	
	with updated triangular edges and recovering routing paths.	20
2.8	Flow presented [14]	.23
2.9	Migration flow [24]	.24
2.10	Analog placer input file	27
2.11	Proximity constraint	29
2.12	Proximity_ahead constraint	29
2.13	X-direction alignment	.30
3.1	Tachnelacy call narameters Manning file	22
	Technology cell parameters Mapping file	
3.2	Analog Layout placement re-targeting flow	
3.3	layout reading SKILL script	
3.4	Layout Constraint Extractor	
3.5	Common-Centroid placement constraint	
3.6	Interdigitation placement constraint	
3.7	Matched building blocks	
3.8	Axis of symmetry detection	
3.9	Proximity condition testing scenarios	.43

LIST OF FIGURES

3.10	Proximity testing (for cells not having x-direction align-	
	ment relationship)	45
3.11	Proximity ahead constraint detection	47
3.12	Abutment Constraint testing	49
3.13	Row_Center Alignment Constraint	50
3.14	Row_top/bottom alignment detection	52
3.15	Row_top/bottom alignment testing flow chart	53
3.16	Column_center Alignment constraint	54
3.17	Column_left/right alignment detection	55
3.18	Column_left/right alignment testing flow	56
3.19	Symmetry detection	57
3.20	Relative placement detection	58
3.21	Orientation realizations	60
3.22	Orientation changing based on source layout	61
3.23	Properties and parameters comparison	62
3.24	Generated SKILL scripts in the proposed flow	63
3.25	Generated intermediate txt files	64
	Abutment	
3.27	Instances vertex and lower left corner of its boundary box	67
3.28	Pins creation	72
4.1	OTA schematic	75
4.2	Porting 130nm to 65nm mapping file	
4.3	Schematic driven layout	
4.4	OTA source layout	
4.5	Source layout constraints	
4.6	Target layout generation	
4.7	Comparator general design	
4.8	Comparator schematic	
4.9	Comparator source layout	
4.10	•	
4.11		

List of Tables

4.1	Running Time vs other methods	86
4.2	Proposed work vs template based methods	87