

Ain Shams University
Faculty of Engineering
Design and Production Engineering

Nanostructured Materials for Solar Fuel Production

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

(Design and Production Engineering)

by

Mostafa Mamdouh Abd-Allah Omar

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2012

Supervised By

Prof. Adel B. El-Shabasy Assoc. Prof. Nageh K. Allam

Cairo - (2017)

Ain Shams University
Faculty of Engineering
Design and Production Engineering

Nanostructured Materials for Solar Fuel Production

by

Mostafa Mamdouh Abd-Allah Omar

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, 2012

Supervising Committee

	Signature
Prof. Adel B. El-Shabasy, Ain Shams University	
Associate Prof. Nageh K. Allam, The American University in Cairo	
Date:	

Ain Shams University
Faculty of Engineering
Design and Production Engineering

Nanostructured Materials for Solar Fuel Production

by

Mostafa Mamdouh Abd-Allah Omar

Bachelor of Science in Mechanical Engineering
(Design and Production Engineering)
Faculty of Engineering, Ain Shams University, 2012

Examiners' Committee

Name and Affiliation	Signature
Prof. Elsayed A.Ashour	
National Research Center	
Prof. Bakr M. Rabeeh	
Engineering and Materials Science, German	
University in Cairo	
Prof. Adel B. El-Shabasy	
Design and Production Department, Ain Shams	
University	
Assoc. Prof. Nageh K. Allam	
School of Science and Engineering, The American	
University in Cairo	

Date:

Statement

This thesis is submitted	as a partial	fulfillment	of Master	of Science	in Mecha	nical
Engineering, Faculty of E	ngineering,	Ain shams U	Jniversity.			

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature

Mostafa Mamdouh Abd-Allah Omar

Date:

Researcher Data

Name : Mostafa Mamdouh Abd-Allah Omar

Date of birth : 18/01/1991

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Mechanical Engineering

University issued the degree: Ain Shams University

Date of issued degree : July, 2012

Current job : Teaching Assistant, Design and Production

Engineering Department, Faculty of Engineering, Ain Shams University, Cairo,

Egypt.

Thesis Summary

Finding a sustainable, clean energy source is considered the most important challenge facing the scientific community in the 21st century, and since the sunlight is the most sustained, abundant energy source on earth, many research efforts have been directed towards utilizing solar energy in different fields. Photoelectrochemical (PEC) water splitting is one of the most studied routes for solar fuel production at which sunlight is used directly to split water into hydrogen and oxygen.

However, till now, no single material can satisfy all the requirements for a high efficient PEC water splitting. Challenges such as large band gap, stability, and cost still hinders the application of PEC water splitting on a larger scale. Of the different candidate materials for water splitting, immense research efforts have been exerted on TiO₂ to make them efficient photoanodes, owing to their stability, suitable band edge positions, and low cost. Nevertheless, their large band gap is still a major problem.

The main aim of this thesis was to make use of nanostructuring, morphology tuning, and alloying to overcome the pure TiO₂ challenges *via* the fabrication of complex oxide nanotubes. Different one-step potentiostatic anodization conditions for a Ti-Nb-Zr alloy were investigated aiming to synthesize Ti-Nb-Zr-O nanotubes. A formamide-based electrolyte containing NH₄F was used in the anodization. The effect of anodization potential and time were thoroughly studied.

FESEM, XRD, Raman Spectroscopy, XPS, and EDX were used to characterize the morphology, crystallinity, and composition of the synthesized nanotubes. In addition, the optical and PEC properties were investigated *via* Linear Sweep Voltammetry, Chronoamperometry, and Mott-Schottky analysis. A micro-mechanical model was built and verified using the FESEM images to further understand the kinetics of the nanotubes growth.

NTs with diameters up to 507 nm and lengths up to $36 \mu m$ were successfully fabricated. It was found that with the increase of the anodization potential, the diameters and length of the nanotubes increased. On the other hand, increasing the anodization time was found to have almost no effect on the nanotubes diameter, although it led to increase

in the nanotubes length. In addition, anodization at 100 V for 2 hours led to the formation of multipodal nanotubes.

The growth kinetics of the nanotubes were studied at 40V. Nanotubes growth can be considered as 2 main stages. First, a stage with a fast growth rate which was calculated to be 2.8 nm/sec, and a second steady-state stage with a growth rate of 0.198 nm/sec.

The micro-mechanical model suggested that the multipodal (MP) nanostructure formation is owed to bending and fusion of discrete NTs. This theoretical model considered NTs as a bottom-fixed cantilever, and was used to analyze the preconditions required for the formation of MP nanostructure. The model findings suggest that bending only occurs when the net forces acting on the NTs overcome the NTs stiffness as it passes a critical length which can be calculated as a function of the modulus of elasticity, 2nd moment of area, and the surface tension of the electrolyte. Refractive indices calculations showed that MPNTs have a graded refractive index, being max. at the bottom oxide layer and decreases as we get closer to the air at the top of the tubes. This gradient increase light scattering probability, which in turn enhanced its light harvesting characteristics.

As a proof, the photoelectrochemical properties of the MPNTs annealed in air showed a 9-fold enhancement in the photocurrent density compared to conventional compact NTs. This enhancement is ascribed to the MP morphology with its graded refractive index as well as easier charge transport. Mott-Schottky analysis demonstrated a positive shift in the flat band potential for the MPNTs when compared to the compact counterpart as well as double charge density. Further verification was obtained by removing the multipodal portion of the NTs via sonication, the sonicated samples showed significantly lower photocurrent. H₂ annealed samples showed the same trend confirming that this improvement is related to the presence of the MPNTs and independent of the annealing condition.

Hence, fabricating multipodal nanotubes from metal oxides can be considered as a promising route for engineering the complex metal oxides to enhance their performance for PEC water splitting.

KEYWORDS: Complex oxides, nanomaterials, multipodal nanotubes, anodization, water splitting.

Table of Contents

Thesis Summaryvi
Table of Contentsix
List of Figuresxii
List of Tablesxvi
List of Acronymsxvii
List of Symbolsxix
Chapter 1 1
1 Introduction
1.1 Energy Challenge Facts
Chapter 24
2 Background and Literature Review4
2.1 Hydrogen as a potential fuel
2.2 Solar Energy for Hydrogen Production
2.3 Water Splitting Theoretical Background
2.4 Metal oxides for PEC Water Splitting
2.5 TiO ₂ Properties
2.5.1 Crystal Structure
2.5.2 Main Challenge Facing TiO ₂ in Light Harvesting
2.6 Different Routes for Modifying TiO ₂ Properties
2.6.1 Nanostructures
2.6.2 Annealing
2.6.3 Doping
2.7 TiO ₂ NTs Synthesis

	2	2.7.1	Self-organized NTs Synthesis	28
	2	2.7.2	NTs Formation Kinetics	30
	2.8	Scop	pe of thesis	31
	2	2.8.1	Problem Statement	31
	2	2.8.2	Thesis Objective	31
Cł	napter	3	Error! Bookmark not defin	red.
3	Mat	terials	and Experimental Methods	33
	3.1	Mate	erials and Supplies	33
	3.2	Anoc	dization	33
	3	3.2.1	Samples Preparation Prior Anodization	33
	3	3.2.2	Potentiostatic Anodization	33
	3.3	Ther	mal Annealing	35
	3.4	Char	racterization	35
	3	3.4.1	Morphology Characterization	35
	3	3.4.2	Structural and Compositional Characterization	36
	3	3.4.3	Optical and Photoelectrochemical Characterization	36
	3	3.4.4	MPNTs Micromechanical Model	38
	3	3.4.5	Work Flowchart	39
Cł	napter	4		41
4	Res	ults ar	nd Discussion	41
	4.1	Morp	phological Characterization	41
	4	1.1.1	Fabrication of NTs	41
	4	1.1.2	Morphology Study	46
	4	1.1.3	NTs Growth Kinetics	53
	12	MDN	ITs and its formation mechanism	57

4.2	.1 MPNTs Morphology Analysis	57
4.2	.2 MPNTs Micromechanical Model:	64
4.2	.3 NTs Formation Kinetics	71
4.3 F	PEC Characterization	74
4.3	.1 Compositional Characterization	74
4.3	.2 Structural Characterization	75
4.3	.3 Optical and PEC Characterization	85
Chapter 5		91
5 Concl	usion and Future Work	91
5.1 F	Future work	93
Reference	s	95
Appendice	es	110
Appen	dix 1 Ti alloy data sheet: ATI Tiadyne TM 3510	111

List of Figures

Figure 2.1 Volumetric vs. gravimetric energy density plots of the major energy carriers. ⁵
Figure 2.2 The hydrogen cycle in nature. ⁵
Figure 2.3 (a)The "hydrogen economy" supplies and demands of hydrogen 8, (b) Hydrogen
production technologies and their corresponding CO ₂ emissions ⁹ , (c) Various sources and energy
related applications of hydrogen. 10
Figure 2.4 Schematic diagram of water electrolysis process.8
Figure 2.5 Forecast of hydrogen production costs using different technologies.9
Figure 2.6 Direct normal irradiation on (a) earth, (b) Egypt 12, (c) Electricity generation statistic
in Africa. ¹³
Figure 2.7 Photo-electrochemical hydrogen generation from water using solar energy. 15 10
Figure 2.8 Schematic diagram showing the n-type photoanode band structure and the resultan
processes after absorbing photon energy: electron-hole separation, charge transport, and
corresponding reactions at each electrode. 16
Figure 2.9 Band edge positions of different candidate materials for water splitting. ²⁵
Figure 2.10 No. of publications related to TiO ₂ on webofscience.com. ⁶⁸
Figure 2.11 (a) Schematic illustration of the TiO ₆ octahedron of the TiO ₂ . Gray: Ti atom, Red
oxygen atom, (b)Tetragonal crystal structure of the anatase, (c) Tetragonal crystal structure of the
rutile. ^{29,77}
Figure 2.12 Schematic illustration of photoinduced charge separation through: (a) nanoparticles
(b) NTs. 95 (c) charge transport through the TiO_2 NT
Figure 2.13 Measured electrical resistance as a function of the annealing temperature of TiO_2 NT
annealed in air for 2.5 hours. 100
Figure 2.14 FESEM images of the TiO_2 NTs annealed at 500 °C with different ramping rates, (a
1°Cs^{-1} , (b) 25°Cs^{-1} , (c) 50°Cs^{-1} . The cross-sectional views of the corresponding layers are shown
in the upper row insets. 80 (d) XRD pattern of TiO $_2$ NTs as-formed and after annealing at different terms of the upper row insets.
temperatures in air. 102
Figure 2.15 Cracks at the tube wall after annealing can be seen from the FESEM and TEM image
of TiO ₂ NTs. ⁹⁵
Figure 2.16 Absorption spectra of the doped $TiO_{2-x}N_x$ and undoped TiO_2 films. ¹⁰⁵
Figure 2.17 XPS spectra obtained for annealed Ti-Nb-Zr-O NTs fabricated via anodization. 115 2:
Figure 2.18 FESEM images of Ti-0.3Mo-0.8Ni samples anodized for 5 hours at (a) 20 V, (b) 30
V 116

Figure 2.19 Overview of the different routes to fabricate TiO ₂ NTs: (a) hydrothermal method, (b)
template assisted, (c) anodization, and (d) electrospinning. 130
Figure 2.20 FESEM of anodic oxide films grown on titanium. 132
Figure 2.21 The five possible morphologies that can be produced from anodization: (I)
electropolishing, (II) formation of compact oxide layer, (III) self-ordered NTs, (IV) disorganized
oxide NTs, and (V) ordered porous layer
Figure 3.1 (a) Schematic illustration of the Anodization setup, (b), and (c) actual anodization
setup
Figure 3.2 (a) The used Lindberg/Blue M tube furnace, (b) The thermal cycle of the samples during
annealing
Figure 3.3 (a) Schematic illustration of the PEC cell used 18, (b) The actual 3-electrode cell used
in the PEC measuremetnts, (c) The full experiment set-up of the PEC experiments
Figure 3.4 Schematic illustration of the calculation of AM1.5. 160
Figure 3.5 A schematic illustration of the force resolution on a bent NT fixed from the bottom.39
Figure 4.1 Bird-eye top view FESEM images of 40V/18hrs samples with different anodization
conditions: (a) grinded, (b) polished
Figure 4.2 Anodized samples after sonication with (a) good adhesion, (b) poor adhesion, and (c)
No adhesion. 42
Figure 4.3 Bird-eye view of NTs fabricated at potentials 10-40V. Insets: High resolution top view
FESEM images for the tubes' pores. 43
Figure 4.4 Bird-eye view of NTs fabricated at potentials 50-100V. Insets: High resolution top
view FESEM images for the tubes' pores
Figure 4.5 Side view FESEM images for the fabricated NTs at potentials 10-100V45
Figure 4.6 Bird-eye top view FESEM images of (a) 10V/2hrs, (b) 10V/14hrs samples
Figure 4.7 Bird-eye top view FESEM images of (a) 100V/2hrs, (b) 100V/14hrs samples 47
Figure 4.8 High resolution top view FESEM image of a top pore (a) 80V/2hrs, (b) 80V/14hrs
samples
Figure 4.9 NTs dimensions dependence on anodization time: (a) NTs Length, (b) NTs pore
diameter, and (c) NTs wall thickness
Figure 4.10 Bird-eye top view FESEM images of (a) 20V/2hrs, (b) 60V/2hrs, and (c) 80V/2hrs
samples
Figure 4.11 High resolution top view FESEM image of (a) 30V/2hrs, (b) 100V/2hrs samples 50
Figure 4.12 NTs dimensions dependence on the anodization potential: a) NTs Length, (b) NTs
pore diameter, and (c) NTs wall thickness
Figure 4.13 Cross-sectional view FESEM images of (a) 40V/2hrs, (b) 80V/2hrs samples 52

Figure 4.14 NTs length dependence on time for a 40V anodized sample showing different growth
rates. 54
Figure 4.15 Top view FESEM image of a 100V/2hrs sample showing the common pore with
multi-pods. Inset shows a high magnification image for a tripodal as well as bipodal NT 55
Figure 4.16 Top view FESEM images of samples anodized at 40 V for: (a) 5 mins, (b) 10 mins,
(c) 15 mins, (d) 30 mins, (e) 60 mins, and (f) 120 mins. Insets show the corresponding cross-
sectional side views. 56
Figure 4.17 FESEM images of the as-prepared Ti-Nb-Zr-O MPNTs via anodization for 2 hours at
100 V. (a) Tilted surface where the inset shows a high magnification image of a tripodal NTs, (b)
normal top view image, arrows point to the different pods for the same mouth and the inset shows
a high magnification image of a bipodal NTs
Figure 4.18 Cross-sectional view of as-prepared MPNTs, where different formation stages are
pointed out by the arrows
Figure 4.19 Top and cross-sectional view FESEM images of the compact NTs fabricated by
anodization for 2 hours at 60 V
Figure 4.20 (a-d) Bird-eye view FESEM images of samples anodized for (a) 2 hours, (b) 8 hours,
and (c) 14 hours. Yellow dashed lines highlight the V-shaped gaps. (d) High magnification image
of a V-shaped gap. (e-h) High magnification FESEM images showing the dissolution and time
effect for samples anodized for (e) 2 hours, (f) 4 hours, (g) 8 hours, and (h) 14 hours
Figure 4.21 The pore formation due to the local oxide breakdown
Figure 4.22 The dependence of NTs dimensions fabricated at 100 V on anodization time 62
Figure 4.23 A schematic illustration of the force resolution on a bent NT fixed from the bottom.
64
Figure 4.24 The relation between the net force acting on the NT and its length to reach a certain
amount of deflection assuming other properties are constant
Figure 4.25 (a) Schematic illustration of the MPNTs evolution during different growth stages and
(b) detailed mechanism of fusion between 2 independent tubes reposing on each other into one
common pore with the corresponding FESEM images as a proof-of-concept
Figure 4.26 FESEM images of the MPNTs at different growth stages
Figure 4.27 FESEM images of MPNTs anodized for 2 hours at 100 V. (a) Tilted surface where
the inset shows a high magnification image of the MPNTs, (b) bottom view of the MPNTs
confirming the presence of a compact NTs at the bottom (c) closeup image of a tripodal nanotube,
the inset shows a cross-sectional view
Figure 4.28 (a) Schematic illustration of the formation processes based on the mixed model
proposed in comparison with the present actual top views. (a-1) The pore formation due to the

local oxide breakdown. (a-2) The flow of the oxide layer bottom-up. (a-3) The fusion process of
the NTs as they lean on each other. (b) Schematic illustration of the formation process based or
the FAD model in comparison with the actual top views exhibited by the NTs
Figure 4.29 (a) Compact oxide layer formed on the top of the NTs, (b) Remnants of the compact
oxide layer after dissolution
Figure 4.30 EDX spectra of the metal alloy before anodization
Figure 4.31 EDX spectra of the NTs after anodization
Figure 4.32 XRD diffraction patterns of the air-annealed sample. (Vertical lines indicated the
positions of the nominal anatase peaks - JCPDS: 01-075-2545)
Figure 4.33 $\beta hklcos\theta hkl$ vs. $4sin\theta hkl$ plots 78
Figure 4.34 Raman spectra of a 4 hour annealed samples
Figure 4.35 Pure Ti annealed at the same conditions of the alloy
Figure 4.36 Interstitial sites in the anatase crystal structure.
Figure 4.37 XPS spectra of (a) Ti, (b) Nb, (c) Zr, and (d) O
Figure 4.38 Absorbance of the TiO ₂ compared to the formed oxide
Figure 4.39 (a) Diffuse reflectance and (b)absorbance spectra of MPNTs and compact NTs 87
Figure 4.40 Photoelectrochemical performance of MPNTs and compact NTs: (a) LSV, (b)
normalized Chronoamperometric measurements conducted at 0.5 V
Figure 4.41 Mott-Schottky plots of Compact as well as MPNTs
Figure 4.42 Originally fabricated MPNTs at 100 V (a) before, and (b) after sonication 90
Figure 4.43 LSV of H ₂ annealed samples before and after sonication