

COMPARISON BETWEEN THE EFFECT OF HYPERBARIC AND NORMOBARIC HYPEROXIA ON THE FUNCTIONAL OUTCOME IN PATIENTS WITH TRAUMATIC BRAIN INJURY

Essay

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

By

Mohammed Hamdy Abd El-hamid Harb M.B., B.Ch

Supervised by

Prof. Dr. Mohamed Anwar Elshafie

Professor of Anesthesia and Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Hany Victor Zaki

Lecturer of Anesthesia and Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Heba Fouad Abd Elaziz Toulan

Lecturer of Anesthesia and Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2017

سورة البقرة الآية: ٣٢

First of all, thanks to ALLAH for help and strength offered to me during this work.

I am greatly indebted and grateful to Prof. Dr. Mohamed Anwar Elshafay, Professor of Anesthesia, Intensive care and Pain Management, Faculty of Medicine, Ain Shams University, for his precious advice, constructive guidance, kindness and valuable support, which made his supervision a great pleasure to me.

I would like to express my deepest gratitude and appreciation to Dr. Hany Victor Zaki, Lecturer of Anesthesia, Intensive care and Pain Management Faculty of Medicine, Ain Shams University for his willing assistance, kindness, patience, valuable support, encouragement and unlimited help.

I would like to express my deepest gratitude and appreciation to Dr. Heba Fouad Abd Elaziz Toulan, Lecturer of Anesthesia, Intensive care and Pain Management Faculty of Medicine, Ain Shams University for her laborious effort, indispensable help, patience, as well as for her constant moral support and encouragement. I can hardly express my thanks for all what she has done throughout this work.

I would like to thank all members of staff and personnel of department of Anesthesia, Intensive care and Pain Management for helping me to accomplish this work.

Contents

Subjects	Page
List of abbreviations	II
List of figures	IV
List of tables	V
Introduction	1
Aim of the Essay	3
Chapter (1): Epidemiology and pathophysiology of brain injury4	traumatic
Chapter (2): Classification and assessment of traumatic brain injury	16
Chapter (3): Treatment of traumatic brain injury	35
Summary	85
References	87
Arabic Summary	

LIST OF ABBREVIATIONS

AES : Apathy evaluation scale

AGE : Arterial gas emboli

APP : Amyloid precursor protein

ARDS : Acute respiratory distress syndrome

ATA : Atmospheres absolute

ATLS : Advanced Trauma Life Support

AVDO₂ : Arteriovenous oxygen difference

BBB : Blood brain barrier

CaO₂ : Arterial oxygen content

CBF : Cerebral blood flow

CBV : Cerebral blood volume

CDI : Central diabetes insipidus

CNS : Central nervous system

COPD : Chronic obstructive pulmonary disease

CPP : Cerebral perfusion pressure

CSF : Cerebrospinal fluid

CSW: Cerebral salt wasting

CT : Computed Tomography

DAI : Diffuse axonal injury

DALYs: Disability adjusted life years

DCS: Decompression sickness

DLCO: Diffusing capacity for carbon monoxide

DRS : Disability rating score

DVT : Deep vein thrombosis

EEG: Electroencephalography

EGOS: Extended Glasgow outcome scale

List of Abbreviations

ETCO₂: End-tidal carbon dioxide

FIO₂ : Frction of inspired Oxygen

FSW: Feet of sea water

GCS : Glasgow coma scale

GIT : Gastrointestinal tract

H₂ : Histamine receptor -2

Hb : Haemoglobin

HBOT: Hyperbaric oxygen therapy

ICP : Intracranial pressure

ICU : Intensive care unit

IL-10 : Interleukin-10

IL-4: Interleukin-4

IMPACT: International mission for prognosis & clinical

trial

Lactate: Arterial lactate

(art.)

Lactate: Jugular venous lactate

(j.v)

LOI : Lactate oxygen index

MD : Microdialysis

MRI : Magnetic resonance imaging

MSW: Meter of seawater

MV : Mechanical ventilation

NBH : Normobaric hyperoxia

NCSE : Nonconvulsive status epilepticus

PaCO₂ : Arterial carbon dioxide tension

PaO₂ : Arterial oxygen tension

PCS: Postconcussion syndrome

PET : Positron emission tomography

List of Abbreviations

PSI : Pounds per square inch PtiO₂

: Brain tissue oxygen tension PvO₂ :

Jugular venous oxygen tension **rCBF** :

Regional cerebral blood flow

rCMRG: Regional cerebral metabolic rate for glucose

rCMRO₂: Regional cerebral metabolic rate for oxygen

rOEF : Regional oxygen extraction

RSI : Rapid sequence intubation

RTA : Road traffic accidents

SAH : Subarachnoid hemorrhage

 SaO_2 : Oxygen satration of the arterial blood

SIADH: Syndrome of inappropriate anti-diuretic hormone

secretion

SjvO₂ : Jugular venous oxygen saturation

SvO₂ : Oxygen saturation of the jugular venous blood

TAI : Traumatic axonal injury

TBI : Traumatic brain injury

TCD: Transcranial doppler

UPTD: Unit pulmonary toxic dose

VAP : Ventilator associated pneumonia

VF : Ventricular fibrillation

VFP: Ventricular fluid pressure

List of Figures

No.	Figure				
1	CT scan showing heterogeneity of traumatic				
	brain injury.				
2	Intracranial pressure-volume curve.				
3	The intracranial spaces most frequently	31			
	monitored				
4	Monoplace hyperbaric chamber				
5	Multiplace hyperbaric chamber				
6	Physiologic monitors in hyperbaric chamber				
7	Suction inside a hyperbaric chamber				

List of Tables

No.	Table					
1	Glasgow Coma Scale.	18				
2	Pathoanatomic classification of traumatic brain injury.	20				
3	Marshall's classification of CT brain findings in head trauma.					
4	The Rotterdam score.					
5	Oxygen carrying capacity in arterial blood with increasing oxygenation at one, two and three atmospheres absolute (ATA)	54				
6	Ignition sources inside hyperbaric chamber	70				

INTRODUCTION

Traumatic brain injury (TBI) continues to be a major cause of death and disability in both civilian and military populations throughout the world (*Maas et al.*, 2007).

In Egypt, road traffic accidents is the leading cause of TBI, 70% of accidents are due to ignorance and carelessness, and 30% are the result of mechanical problems and poor road conditions. These include insufficient pedestrian crossing facilities and deficient traffic signs at intersections. The situation in Egypt is serious and getting worse year by year, especially exacerbated by the progressing density of traffic, with an annual increase of 80,000 vehicles (*El-Gindi et al.*, 2001).

The first stages of cerebral injury after TBI are characterized by direct tissue damage and impaired regulation of cerebral blood flow and metabolism. This ischemic pattern leads to accumulation of lactic acid due to anaerobic glycolysis, increased membrane permeability, consecutive edema formation and this anaerobic metabolism is inadequate to maintain cellular energy states (*Werner and Engelhard*, 2007).

The fact that TBI has been shown to be associated with decreased brain tissue PO₂ and increased brain lactate levels has led to the general hypothesis that increasing brain tissue PO₂ may improve cerebral aerobic metabolism. Clinical studies based on this reasoning have involved such techniques as increasing the fraction of inspired oxygen (FIO₂) or hyperbaric oxygen therapy (HBOT) (*Wilson et al.*, 2004).

Hyperbaric oxygen therapy (HBOT) is the therapeutic administration of 100% oxygen at environmental pressures greater than 1 atmosphere absolute (ATA). This involves placing the patient in an airtight vessel, increasing the pressure within that vessel, and administering 100% oxygen for respiration. In this way, it is possible to deliver a greatly increased partial pressure of oxygen to the tissues. Typically, treatments involve pressurization to between 1.5 and 3.0 ATA, for periods between 60 and 120 minutes, one or more times daily (*Bennett et al.*, 2012).

Another method of supernormal O2 delivery is increasing the FiO2 to 100% at normobaric pressure. Normobaric hyperoxia therapy is a potentially attractive alternative to HBO2 because of its ease of administration. Several studies have shown that as FiO₂ increases, there is a corresponding rise in brain tissue PO₂. In addition, microdialysate lactate decrease, which likely indicates improvements in tissue hypoxia (*Tolias et al.*, 2004).

AIM OF THE ESSAY

Is to discuss the effect of hyperbaric to normobaric hyperoxia on the functional outcome in patients with traumatic brain injury.

CHAPTER 1: EPIDEMIOLOGY AND PATHOPHYSIOLOGY OF TRAUMATIC BRAIN INJURY (TBI)

I) Epidemiology:

TBI accounts for approximately 40% of all deaths from acute injuries in the United States. Annually, 200,000 victims of TBI need hospitalization, and 1.74 million persons sustain mild TBI requiring an office visit or temporary disability for at least 1 day. The financial cost is estimated at approximately 4 billion dollars per year (*Corrigan et al.*, 2010).

The TBI incidence rate in developing nations is generally higher than more developed nations and is predicted to surpass many diseases as a main cause of death and disability by the year 2030 (*Tagliaferri et al.*, 2005).

Developing countries bear the brunt of the fatalities and disabilities from road traffic crashes, accounting for more than 85% of the world's road fatalities and about 90% of the total disability adjusted life years (DALYs) lost due to road traffic injuries. The problem is increasing in these countries at a fast rate, while it is declining in all industrialized nations (*Farghaly et al.*, 2005).

Epidemiology and Pathophysiology Of TBI

In Egypt, road traffic accidents (RTA) is the leading cause of TBI, 70% of accidents are due to ignorance and carelessness, and 30% are the result of mechanical problems and poor road conditions. These include insufficient pedestrian crossing facilities and deficient traffic signs at intersections. The situation in Egypt is serious and getting worse year by year, especially exacerbated by the progressing density of traffic, with an annual increase of 80,000 vehicles (*El-Gindi et al.*, 2001).

The Egyptian Ministry of Internal Affairs in March, 2001 reported that, 6% of accidents were due to roads and environmental conditions, 24% were due to vehicle transportation while the human factors represent about 70% of the causes of accidents (*Farghaly et al.*, 2005).