FACTORS INFLUENCING PESTICIDE RESIDUES IN SOME EXPORTED VEGETABLE CROPS AND MEANS OF THEIR ELIMINATION

BY AHMAD HANAFI HUSSEIN

B.Sc. Agric. Sc., (Pesticides), Ain Shams University, 1998

M.Sc.Agric. Sc., (Pesticides), Ain Shams University, 2003

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Science (Pesticides)

Department of Plant Protection Faculty of Agriculture Ain Shams University

2007

Approval Sheet

FACTORS INFLUENCING PESTICIDE RESIDUES IN SOME EXPORTED VEGETABLE CROPS AND MEANS OF THEIR ELIMINATION

BY AHMAD HANAFI HUSSEIN

B.Sc. Agric. Sc., (Pesticides), Ain Shams University, 1998M.Sc.Agric. Sc., (Pesticides), Ain Shams University, 2003

This thesis for Ph.D. degree has been approved by:		
Prof. Dr. Nabil Ahmed Mansour		
Prof. Emeritus of Pesticide chemistry, Faculty of Agriculture (El Shatby),		
Alexandria University		
Prof. Dr. Zidan Hendi Abd El- Hameed		
Prof. Emeritus of Pesticides, Faculty of Agriculture, Ain shams		
University		
Prof. Dr. Amged Mohamed Kamel Sobeiha		
Prof. Emeritus of Pesticides, Faculty of Agriculture, Ain Shams		
University		
Prof. Dr. Mohamed Ibraheam Abd El-Megeed		
Prof. Emeritus of Pesticides , Faculty of Agriculture, Ain shams		
University		
Date of examination: / / 2007		

FACTORS INFLUENCING PESTICIDE RESIDUES IN SOME EXPORTED VEGETABLE CROPS AND MEANS OF THEIR ELIMINATION

BY AHMAD HANAFI HUSSEIN

B.Sc. Agric. Sc., (Pesticides), Ain Shams University, 1998

M.Sc.Agric. Sc., (Pesticides), Ain Shams University, 2003

Under the supervision of:

Prof. Dr. Mohamed Ibraheam Abd El-Megeed

Prof. Emeritus of Pesticides, Department of Plant Protection, Faculty of Agriculture, Ain shams University

Prof. Dr. Amged Mohamed Kamel Sobeiha

Prof. Emeritus of Pesticides., Department of Plant Protection, Faculty of Agriculture, Ain Shams University

Prof. Dr. Sayed Mohamed Abd- El- Latif Dahroug

Prof. of Pesticides , Department of Plant Protection, Faculty of Agriculture, Ain shams University

Prof. Dr. Ole-Martin Eklo

Prof. of Pesticides, Department of Weed Science and Ecotoxicology, Plant Health and Plant Protection Division, Bioforsk, Norway

ABSTRACT

Ahmad Hanafi Hussein. Factors Influencing Pesticide Residues in Some Exported Vegetable Crops and Means of Their Elimination . Unpublished Ph.D. Dissertation, Ain Shams University, Faculty of Agriculture, Department of Plant Protection, 2007.

The information related to pesticide practices followed on green beans and strawberry in some exportation farms of Egypt was obtained using questionnaires forms. Monitoring of pesticide residues on the Egyptian exported strawberry, lettuce and rocket was carried out in Norway. Also the degradation patterns of azoxystrobin, cyprodinil, fludioxonil, fenhexamid, and myclobutanil were studied on strawberry fruits under field trial conditions during December 2005 till January 2006 at a farm following EUREPGAP guidelines.

Furthermore, elimination of azoxystrobin, cyprodinil, fludioxonil residues on/in strawberry, lettuce and rocket was determined in two lots pretreated by the recommended rates of the investigated fungicides. Also, the effect of cooking of strawberry fruits on reduction of the residues of the tested fungicides was investigated. Finally the effect of cold storage conditions on azoxystrobin, cyprodinil, fludioxonil residues on/in strawberry, lettuce and rocket was evaluated on the two lots of the tested vegetables after arrival to Norway.

All samples at the present study have been analysed using GC-NPD/ECD and GC/MS at Bioforsk accredited Lab, Ås, Norway.

The obtained data from the designed questionnaire indicated that the percentages of the rejection related to the pesticide residues were 11.11 and 7.69% in green beans and strawberry respectively. The recommended rates of the used pesticides established by the Ministry of Agriculture or EU guidelines were followed by 86.67 and 69.23% of growers in green beans and strawberry, respectively. The percentages of the exporters who were repeating the all or each of pesticides during the same season of green beans and strawberry reached 48.89 and 42.31% respectively. Furthermore, 15.56 and 7.69% of growers were following the

recommended PHI for each pesticides used in green beans and strawberry, respectively.

On the other hand, no storage period was followed by 40 and 76.92% of the exporters on green beans and strawberry, respectively. Considering the transportation conditions, 55.56 and 88.46% of the exporters were following cooling trucks in transportation of green beans and strawberry, respectively.

Examination of the obtained data revealed that strawberry samples were relatively the most contaminated samples with pesticides compared with lettuce and rocket samples. On the other hand, no pesticide residues were detected in all lettuce samples during the investigated period. In rocket samples, the only detected pesticide was azoxystrobin at the concentration of 0.19 mg/kg in December. No pesticides residues were detected in the other months.

All the contaminated samples of strawberry, and rocket with pesticide residues did not exceed the legitimated MRL; with one exception in strawberry whereas only one sample (January sample) was exceeding MRL of cyprodinil (0.5 mg/kg).

The half-life values ($t_{0.5}$) were 1.92, 4.99, 3.68, 6.02 and 5.17 days for azoxystrobin, cyprodinil, fludioxonil, fenhexamid and myclobutanil, respectively.

The obtained data showed that glycerol 5% was the most effective washing solution in reducing azoxystrobin residues where the highest reduction percentages of residues were recorded in strawberry samples, reached 40.9% at the 1st lot while the highest reduction percentages obtained in lettuce and rocket i.e. 68.07% and 78.33% at the 2nd lot, respectively.

However, Citric acid was the best washing treatments in eliminating cyprodinil and fludioxonil residues in all tested fungicides. The reduction rates of cyprodinil and fludioxonil at the 1st lot of strawberry reached 76.09 and 82.93%, and 67.39 and 79.84 at the 2nd lot of lettuce samples, respectively. Also, the reduction rates of cyprodinil

and fludioxonil residues at the 1st lot of rocket samples, reached 42.50 and 63.23%, respectively.

On the other hand, the reduction percentages of the residues of the investigated fungicides after heating treatment at the 1st and the 2nd lot of strawberry samples reached 80.43, 78.05% and 78.05, 80% and 96.3, 98.25% for cyprodinil, fludioxonil and azoxystrobin, respectively.

The obtained data indicated that the losses percentages of the initial residues because of the cold storage at 4°C on strawberry, lettuce and rocket samples reached 2.7, 0.0 and 11.11% and 5.46, 13.55 and 32.48% and 17.58, 13.91 and 34.81% for cyprodinil, fludioxonil and azoxystrobin, respectively.

Key words: Questionnaire, Pesticide practices, Monitoring, Pesticide Residues, Degradation, Azoxystrobin, Cyprodinil, Fludioxonil, Fenhexamid, Myclobutanil, Washing, Elimination, Removal, Cooking Strawberry, Lettuce, Rocket, Cold storage, GC/MS and GC-NPD/ECD.

ACKNOWLEDGEMENT

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Mohamed Ibraheam Abd El Megeed.** Prof. of Pesticides, Plant Protection Dept., Faculty of Agriculture, Ain Shams University, for his supervision, reading the manuscript, helpful suggestions and offering facilities of the work.

My deep gratitude is extended to **Prof. Dr. Amged Kamel Sobeiha** Prof. of Pesticides., Plant Protection Dept., Faculty of Agriculture, Ain Shams University, for his supervision, revising the manuscript, helpful suggestions and constructive criticism.

The author also extends his deep thanks to **Prof. Dr. Sayed Mohamed Abd El Latif Dahroug** Prof. of Pesticides, Plant Protection
Dept., Faculty of Agriculture, Ain shams University, for his supervision.

My deep gratitude to **Prof. Dr Ole-Martin Eklo** Prof. of Pesticides, Weed Science and Ecotoxicology Dept., Plant Health and Plant Protection Division, Bioforsk, Norway., for receiving me in Norway, helpful advices, facilities and support during my stay in Norway and after I back to Egypt.

Also I would like to express my deepest appreciation and gratitude for **Borge Holan** the Manager of Bioforsk accredited Lab. for giving me the chance to work at Bioforsk Lab. during my stay in Norway. My deepest appreciation and gratitude is extended to all **staff at Bioforsk accredited Lab**. for supportive information, helpful guidelines and great cooperation in analysis of samples.

My grateful acknowledge for the **Norwegian Research Council** for awarding the grant for 12 months in Norway and covering all research costs during the grant period.

Many thanks for **Dag Thomassen**, Quality manager of BAMA company and **Trond Roald**, Buying Manager of COOP company for offering samples of the exported Egyptian crops during my stay in Norway.

CONTENTS

LIST OF TABLES
LIST OF FIGUERS
I- INTRODUCTION
II- REVIEW OF LITERATURE
1. Monitoring of pesticides residues in vegetables and fruits
2. Degradation of the tested fungicides on strawberry fruits
under field conditions
3. Elimination of pesticide residue levels and the losses rate
of certain pesticides on/in fruits and vegetables under
cold storage conditions
III- MATERIAL AND METHODS
1. Questionnaire design form and data collection
2. Monitoring of pesticides residues on some exported
vegetable crops to Norway
2.1. Samples collection
2.2. Sample preparation and extraction
2.3. Determination of pesticide residues
2.3.1. GC analysis
2.3.2. Percentage of pesticides recovery
2.3.3. Standard calibration curves
2.3.4. Verification (GC/MS analysis)
3. Establishment of the degradation curves for the
investigated fungicides
3.1. Fungicides used
3.1.1. Azoxystrobin
3.1.2. Cyprodinil
3.1.3. Fludioxonil
3.1.4. Fenhexamid
3.1.5. Myclobutanil
3.2. Experimental work

3.2.1. The Experiment design	4
3.2.2. Sampling	4
3.2.3. Extraction, clean up and GC-MS determination of the residues	4
3.2.4. Percentage of fungicides recovery	4
3.2.5. Standard calibration curves	2
4. Elimination of certain residue levels of some fungicides on	
strawberry, lettuce and rocket crops	4
4.1. Fungicide used	4
4.2. Experimental design and sampling technique	
4.3. Washing solutions and residue-take off techniques	
4.4. Cooking treatment technique for the strawberry samples	
4.5. Effect of cold storage conditions on the fungicide residues on	
strawberry, lettuce and rocket crops	
4.5.1. Sampling	
4.6. Extraction, clean up and GC-MS determination of fungicide	
residues	
4.7. Percentage of fungicides recovery	
4.8. Standard calibration curves of fungicides on strawberry,	
lettuce and rocket	
IV- RESULTS AND DISSCUSSION	
1. Analysis of the exporter responses obtained from the	
questionnaires	
1.1. The percentages of the rejected lots by the importers	
1.2. Factors affecting the pesticide residues levels on the	
exported green beans and strawberry fruits	52
1.2.1. Pesticide application rates	52
1.2.2. The number and type of pesticides used	5.
1.2.3. The Pre Harvest Interval (PHI) on green beans	
and strawberry	5
1.2.4. The crop storage and transportation conditions	5

2. Monitoring of pesticides residues in strawberry, lettuce and rocket	
crops exported to Norway	
	70
3. Degradation of certain fungicides on and in strawberry fruits	
under field conditions	74
4. Elimination of certain residue levels of some fungicides in	
strawberry, lettuce and rocket crops	81
4.1. The effect of washing treatments on elimination fungicides	
residues in strawberry, lettuce and rocket crops	81
4.2. The effect of cooking treatments on eliminate the tested	
fungicides residues on strawberry fruits	91
4.3. The effect of cold storage conditions on the residues of certain	
fungicides on/in strawberry, lettuce and rocket	
crops	93
V-SUMMARY	95
VI- REFERENCES	105
VII- APPENDICES	113
VII- ARABIC SUMMARY	

LIST OF TABLES

							Page
Table	(1):	Recovery	percentages	and	retention	time of the	
		pesticide	s standard mi	xture	A		36
Table	(2):	Recovery	percentages	and	retention	time of the	
		pesticide	s standard mi	xture	В		37
Table	(3):	Recovery	percentages	and	retention	time of the	
		pesticide	s standard mi	xture	C		38
Table	(4):	Recovery	percentages	and	retention	time of the	
		pesticide	s standard mi	xture	D		39
Table	(5):	Recovery	percentages	and	retention	time of the	
		pesticide	s standard mi	xture	E		40
Table	(6):	Recovery	percentages	and	retention	time of the	
		-	s standard mi				41
Table	(7): T	The target a	nd quantitativ	ve ion	is used in	determination	
		•	-				46
Table		Ū	of fungicides i				47
		•	alibration curv		•		47
			of fungicides				51
	(-)-		8		<i>J</i>		
Table	(11):	Percentages	s of green bea	ns ex	porters res	ponding to	
		pest contro	ol factors				55-56
Table	(12):	Percentages	s of strawberr	y exp	orters resp	onding to	
		pest contro	ol factors				57-58
Table	(13)	: Pesticide	e residues (mg/k	g) detecte	d in certain	
		Egyptia	n crops colle	cted f	rom Oslo	markets	71
Table	(14):	Dissipation	n pattern of f	ungic	ides in str	awberry fruits	
		under field	d conditions			-	75
Table	(15):	Reduction	of certain fur	ngicid	le residues	of strawberry	
				•			83
Table	(16):		· ·			of lettuce after	

	85
Table (17): Reduction of certain fungicide residues of rocket after	
washing treatments	88
Table (18): The effect of cooking treatment on reduction of	
certain fungicide residues on/in strawberry fruits at	
both lots	92
Table (19): Effect of cold storage conditions on the residues of	
certain fungicides on strawberry, lettuce and rocket	94

LIST OF FIGURES

	Page
Fig. (1): Standard calibration curve of azoxystrobin	48
Fig. (2): Standard calibration curve of cyprodinil and fludioxonil	48
Fig.(3): Standard calibration curve of fenhexamid and	
myclobutanil	48
Fig.(4): Percentage of accepted and rejected exported lots of green	
beans and strawberry fruits	59
Fig.(5): Percentage of reasons of rejected exported lots on green	
beans and strawberry fruits	60
Fig.(6): Percentage of key pests attacking green beans and	
strawberry fruits	61
Fig.(7): Percentage of pest control approaches followed on green	
beans and strawberry fruits	62
Fig.(8): Percentage of pesticide types used on green beans and	
strawberry fruits	63
Fig.(9): Percentage of pesticide rates used on green beans	
and strawberry fruits	64
Fig.(10): Percentage of frequent spraying at the same season on	
green beans and strawberry fruits	65
Fig.(11): Percentage of pesticides types repeated at the same	
season on green beans and strawberry fruits	66
Fig.(12): Percentage of Pre-Harvest Interval (PHI) followed on	
green beans and strawberry fruits	67
Fig.(13): Percentage of post-harvest conditions for green beans	
and strawberry fruits	68
Fig.(14): Percentage of crop transportation conditions for green	69
beans and strawberry fruits	
Fig. (15): Degradation line of azoxystrobin	76
Fig. (16): Degradation line of cyprodinil	76
Fig. (17): Degradation line of fludioxonil	76

Fig. (18): Degradation line of fenhexamid	77
Fig. (19): Degradation line of myclobutanil	77
Fig. (20): Decontamination percentages of fungicide residues	
(mg/kg) of strawberry samples (the 1 st lot)	84
Fig. (21): Decontamination percentages of fungicide residues	
(mg/kg) of strawberry samples (the 2 nd lot)	84
Fig. (22): Decontamination percentages of fungicide residues	
(mg/kg) of lettuce samples (the 1 st lot)	86
Fig. (23): Decontamination percentages of fungicide residues	
(mg/kg) of lettuce samples (the 2 nd lot)	86
Fig. (24): Decontamination percentages of fungicide residues	
(mg/kg) of rocket samples (the 1 st lot)	89
Fig. (25): Decontamination percentages of fungicide residues	89
(mg/kg) of rocket samples (the 2 nd lot)	

LIST OF APPENDICES

	Page
Appendix (1): Insecticides used by exporters on green beans	113
Appendix (2): Fungicides and acaricides used by exporters	
on green beans	114
Appendix (3): Pesticides used by exporters on strawberry	115
Appendix (4): Recommended pesticides on green beans	
according to the Ministry of Agriculture and	
Land Reclamation (2001)	116
Appendix (5): Recommended pesticides on strawberry	117
according to the Ministry of Agriculture and	
Land Reclamation (2001)	
Appendix (6): Recommended pesticides for key pests	
attacking strawberry according to the	
Ministry of Agriculture and Land	
Reclamation (2001)	118
Appendix (7): MRL and ADI values for the insecticides on	
strawberry, lettuce and rocket samples	
screened from December 2005 to April 2006	119-121
Appendix (8): MRL and ADI values for the fungicides	
screened on strawberry, lettuce and rocket	
samples from December 2005 to April 2006	122-123
Appendix (9): MRL and ADI values for the herbicides	
screened on strawberry, lettuce and rocket	
samples from December 2005 to April 2006	124
Appendix (10): Arabic version of the designed questionnaire	125-126
Pr (20). That is version of the action a question and	