Constrained liner in total hip Arthroplasty

Thesis
Submitted for partial Fulfillment of
M.D. in Orthopaedic Surgery.

By **Yamen Mohamed Wanis**

(Master Degree)

Under Supervision of

Prof. Hazem Abdel-Azeem Ibrahim

Professor of Orthopaedic Surgery Faculty of Medicine Cairo University

Prof. Sherif Mamdouh AbdelHafez Amr

Professor of Orthopaedic Surgery Faculty of Medicine Cairo University

Prof. Mohamed Mahmoud Mohamed Hegazi

Assisstant Professor of Orthopaedic Surgery Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University. 2015

Acknowledgment

First and foremost, thanks are due to **ALLAH**, the most kind and merciful.

I gratefully acknowledge the sincere advice and guidance of **Prof. Dr. Hazem Abdel-Azeem Ibrahim**, Professor of Orthopaedic Surgery, Faculty of Medicine - Cairo University, for his support, guidance and general help in accomplishing this work.

Sincere thanks and appreciation are to **Prof. Dr. Sherif Mamdouh AbdelHafez Amr,** Professor of Orthopaedic Surgery, Faculty of Medicine-Cairo University, for his faithful support and supervision throughout this work.

I am greatly honored to express my great appreciation to **Assist. Prof. Dr. Mohamed Mahmoud Mohamed Hegazi,** Assistant Professor of Orthopaedic Surgery, Faculty of Medicine-Cairo University, for his advice, support, direction, and precise revision of this work.

I owe a particular depth of gratitude to my Wife, my Child, and my Family, for their endless support and patience.

Abstract

the possibility for developing much higher stresses at the shell-bone or liner-shell interface, also it decreased range of motion before impingement compared to the non-constrained component with possible adverse effects on polyethylene wear and osteolysis. Various modes of failure were reported; Type I: in the shell-bone interface, Type II: in the shell-liner interface, Type III: the locking mechanism, Type IV: bipolar-femoral head interface. In primary hip arthroplasty, its incidence has been reported to be between 0.6% and 9.9%. With revision surgery, it can be as high as 20%.

Keywords

THA- Arthroplasty-ESR- ASIS-(PIF-ROM).

Contents

Contents	Page
List of Abbreviations	i
List of Figures	ii
List of Tables	ix
I- Introduction	1
II- Chapter 1: Anatomical variations pertinent To surgical approach	4
III- Chapter 2: Hip Instability	11
IV- Chapter 3: Different types of constrained acetabular cups	49
V- Chapter 4: Biomechanics of the constrained acetabular cup	69
VI- Patients and Methods	101
VII- Results	139
VIII- Case Presentation	153
IX- Discussion	167
X- Conclusion	181
XI- Summary	182
XII- References	185
Arabic Summary	۲ - ۱

List of Abbreviations

ASIS	Anterior Superior Iliac Spine
AP	Anteroposterior
BW	Body weight
CFN	Common fibular nerve
CM	Centimeter
Co-Cr	Cobalt-Chromium
CRP	C-Reactive Protein
ESR	Erythrocyte Sedimentation Rate
F_{AB}	Force required by the abductor musculature
Hb	Haemoglobin
HHS	Harris Hip Score
IQR	Interquartile range
JRF	Joint Reaction Force
MM	Millimeter
Nm	Newton/meter
PE	Polyethylene
PIF-ROM	Prosthetic Impingement-Free Range Of hip Motion
ROM	Range Of Motion
SN	Sciatic nerve
SRN	Sivash Russin Noiles
SPSS	Statistical Package for Social Sciences
S-ROM	Standard Range of Motion
THA	Total Hip Arthroplasty
TN	Tibial nerve
UHMWPE	Ultra High Molecular Weight Polyethylene
VHD	Vertical Head Displacement
WBC	White Blood Count
WS	Walking Stick

List of Figures

Figure No.	Figure Title	Page
Fig 2-1	Segmental composition and ramification of the dorsal division of the sacral plexus of typical case	5
Fig 2-2	Segmental composition and ramification of the dorsal division of the sacral plexus (Type B)	6
Fig 2-3	The SN exits the pelvis as an undivided nerve through the infrapiriform portion of the greater sciatic foramen	7
Fig 2-4	Sciatic nerve divisions around piriformis	8
Fig 2-5	The quadrant system for acetabular screw placement.	10
Fig 3-1	Forms of impingement	13
Fig 3-2	Anteroposterior radiograph showing horizontal cup placement with 30° abduction.	20
Fig 3-3	Composite "cone of motion" produced by computer animation	21
Fig 3-4	Lateral Femoral offset	22
Fig 3-5	Liner profiles	23
Fig 3-6	Subject positioning and dynamometer fixation on the custommade frame for the assessment of maximal isometric hip abductor strength	26
Fig 3-7	Assessment of hip abduction strength	27
Fig 3-8	The acetabular cup position in coronal and sagittal planes	29
Fig 3-9	Difference between Radiograph and CT in showing the position of the cup	30
Fig 3-10	Management of dislocation after total hip arthroplasty	32
Fig 3-11	The prosthetic impingement-free ROM increases with increasing femoral head sizes from 22 mm to 40 mm in diameter	35
Fig 3-12	Effect of restoring femoral offset	36
Fig 3-13	Trochanteric advancement	37
Fig 3-14	Effect of head size on PIF-ROM and VHD required before hip dislocation for different acetabular components orientations	39

Fig 3-15	Jump distance of the large femoral head	39
Fig 3-16	(A) Schematic of a tripolar articulation. (B) Intraoperative picture of a tripolar articulation construct at the time of revision THA	42
Fig 3-17	Radiograph showing migration of the constrained acetabular component	45
Fig 4-1	The Sivash metal-on-metal total hip prosthesis	52
Fig 4-2	The constrained bearing insert ofsteonics, Allendale.	54
Fig 4-3	A photograph of a Stryker Trident constrained acetabular liner	54
Fig 4-4	A diagrammatic representation of the Osteonics constrained tripolar prosthesis	55
Fig 4-5	The Depuy Duraloc constrained liner	56
Fig 4-6	The Ringloc Constrained Liner	57
Fig 4-7	The Ring Loc device	58
Fig 4-8	The Trilogy Acetabular System Constrained Liner	58
Fig 4-9	The Freedom constrained liner is shown	60
Fig 4-10	Cutaway monopolar constrained acetabular component	61
Fig 4-11	Cutaway monopolar constrained acetabular component implanted into left hip of a plastic pelvis	63
Fig 4-12	Cementing the constrained liner	68
Fig 5-1	Schematic of forces during single leg stance	70
Fig 5-2	Schematic of forces with a walking stick	71
Fig 5-3	Intraoperative photo with defects at the neck of the stem	74
Fig 5-4	An acetabular osteophyte or the liner itself impinging on the femoral component	75
Fig 5-5	Biomaterial failure. Photograph of retrieved implant demonstrating polyethylene at the liner's apex	77
Fig 5-6	Complete finite element model, with the femoral head seated and the constraining ring in place	79
Fig 5-7	Baseline model snapshot of ABAQUS program code output during lever-out simulation	80
Fig 5-8	Displacement contours showing plastic deformation (mm) after one lever-out event for a cup with an initial opening radius of 13.4 mm	81

Fig 5-9	The jig used for accurate measurement of range	83	
11837	of motion of the constrained cup	0.5	
	Radiograph showing femoral head dislocation		
Fig 5-10	from a Poly-Dial constrained liner with the metal	86	
1 1g 3-10	retaining ring remaining secure about the	00	
	polyethylene rim		
	The closed reduction technique using		
Fig 5-11	fluoroscopic confirmation of femoral head	88	
	positioning		
Fig 5-12	The various modes of failure observed for the	90	
11g 3-12	Osteonics constrained tripolar implant	90	
	A hip with a type-I failure (a failure of fixation of		
Fig 5-13	the constrained implant to bone) in a newly	91	
	inserted acetabular shell		
	Type I failure demonstrating the cup pivoting in		
Fig 5-14	abduction about its only mode of fixation:	92	
	superior screws		
Ei a 5 15	(A) Photograph of retrieval specimen of a Type II	92	
Fig 5-15	failure. (B) Radiograph of a Type II failure	92	
Fig 5-16	A hip with a type-II failure	93	
Fig 5-17	Radiograph demonstrating failure of a	94	
11g 3-17	constrained liner locking ring) +	
	Intraoperative photograph showing a fatigue		
Fig 5-18	fracture through the serial numbers that were	94	
118 3 10	etched on the outer surface of the constraining	74	
	ring		
Fig 5-19	Failure of the locking ring with dislocation of the	94	
	femoral head	<i>/</i> 1	
Fig 5-20	Failure of the constrained ring	95	
Fig 5-21	Radiograph of a Type III failure	96	
Fig 5-22	Femoral head dislocation from the constrained	96	
118 3-22	liner	70	
	Radiograph of first dissociation showing the		
Fig 5-23	femoral head within the inner liner that has	98	
1 1g 3-23	dissociated from the outer liner despite the	70	
	reinforcing ring remaining intact and in place.		
Fig 5 24	Dislocation of the bipolar portion of the	99	
Fig 5-24	constrained device (a type-III failure)	,,,	
	A hip with a type-IV failure in which the		
Fig 5-25	prosthetic head dislocated from the bipolar	99	
	component		

F' (1	E 1, 1, 1	110
Fig 6-1	Femoral templating	110
Fig 6-2	Postero-anterior radiograph	111
Fig 6-3	Pelvic AP radiograph in a semi-sitting position	111
Fig 6-4	Lateral radiograph of the hip	112
Fig 6-5	Line representations of AP radiographic anatomy	113
	of the hip	
Fig 6-6	Acetabular templating	115
Fig 6-7	Femoral stem templating	117
Fig 6-8	Position of the patient	121
Fig 6-9	Hardinge lateral approach	123
Fig 6-10	Duraloc Constrained Liner	123
	The Trilogy Acetabular System Constrained	104
Fig 6-11	Liner(Zimmer Inc, Warsaw, IN)	124
Fig 6-12	Acetabular shell application	125
Fig 6-13	Screws application	126
	The dynamic locking ring put into the acetabular	
Fig 6-14	component.	126
Fig 6-15	Application of the constrained liner.	127
	Placement of the constrained liner	129
Fig 6-16	reinforcement ring	
Fig 6-17	Constrained liner ring insertor	130
Fig 6-18	Final seating of the reinforcement ring.	131
Fig 6-19	The three zones of Delee & Charnley	137
	Pie-chart showing Distribution of Gender among	
Fig 7-1	studied population	139
	Bar-Chart showing Age Group Distribution of	
Fig 7-2	Included Cases	140
115,2	meraded Cases	110
	Pie- showing Indications for Hip Arthroplasty of	
Fig 7-3	Included Cases	141
	Pie-chart Showing the Predominance of left hips	
Fig 7-4	Included Cases	142
	Bar-chart showing Mean of Preoperative versus	
Fig 7-5	that of the Postoperative Harris Hip Score of	143
1 1g /-3	Included Cases	143
	Bar-chart showing Difference between Harris	
Fig 7-6	Hip Score assessed Preoperatively, as well as 1	145
115 /-0	years Postoperatively in Included Cases	173
	Bar-chart showing Difference between "Pain"	
Fig 7-7	Component of Harris Hip Score assessed	146
1 1g /-/	Preoperatively versus 1 year Postoperatively in	140
1	Treoperatively versus r year rostoperatively III	1

	Included Cases	
	Bar-chart showing Difference between	
Fig 7-8	"function" Component of Harris Hip Score	1.47
	assessed Preoperatively versus 1 year	147
	Postoperatively in Included Cases	
	Bar-chart showing Difference between "Range of	
Fig 7-9	Motion" Component of Harris Hip Score	148
lag /-/	assessed Preoperatively versus 1 year	140
	Postoperatively in Included Cases	
	Bar-chart showing Correlation between means of	
Fig 7-10	Harris Hip Score in different indications	149
	preoperatively and postoperatively.	
	Bar-chart showing Correlation between means of	
Fig 7-11	detailed Harris Hip Score in different indications	150
	postoperatively	
Fig 7-12	Pie-chart showing Complicated cases among	151
	included patients	
Fig 8- 1	Pre-operative x-ray of case no.7	153
Fig 8-2	Immediate post-operative x-ray of case no.7	154
Fig 8-3	X-ray 3 months post-operative of case no.7	154
Fig 8-4	X-ray 6 months post-operative of case no.7	155
Fig 8-5	X-ray 1 year post-operative of case no.7	155
Fig 8-6	X-ray pre-operative of case no.12	156
Fig 8-7	Immediate Post -operative x-ray of case no.12	157
	X-ray 10 weeks Post-operative of case showing	
Fig 8-8	Dislocation of the femoral head with the	157
	constraining ring in place no.12	
Fig 8-9	X-ray 10 weeks Post-operative after open	158
11507	reduction of dislocated THA case no.12	130
Fig 8-10	X-ray 6 months Post-operative x-ray of case	158
	no.12	
Fig 8-11	X-ray 1 year post-operative of case no.12	159
Fig 8-12	Pre-operative x-rays of case no.13	160
Fig 8-13	Immediate Post-operative x-ray of case no.13	161
Fig 8-14	X-ray 3 months post-operative of case no.13	161
Fig 8-15	X-ray 6 months post-operative of case no. 13	162
Fig 8-16	X-ray 1 year post-operative of case no. 13	162
Fig 8-17	Pre-operative x-rays of case no.14	163
	Immediate Post-operative x-ray of case no.14	
Fig 8-18	with fracture of proximal femur fixed with wires	164
	and tension band.	

List of Figures

Fig 8-19	X-ray 6 weeks post-operative of case no. 14 after removal of wires.	164
Fig 8-20	X-ray 3 months post-operative of case no.14	165
Fig 8-21	X-ray 6 months post-operative of case no. 14	165
Fig 8-22	X-ray 1 year post-operative of case no. 14	166

List of Tables

Table No.	Table Title	Page
Table 3-1	Significant differences between groups with early and late dislocations	18
Table 3-2	Relationship of surgical approach, implant head size and hip dislocation	21
Table 4-1	Reports included in the analysis done by Williams Jr et al	65
Table 5-1	Types of failure of the constrained cup	89
Table 6-1	Harris Hip score	108
Table 6-2	Paprosky Classification of acetabular defects	118
Table 7-1	Distribution of Gender among studied population	139
Table 7-2	Mean age of included patients and standard Deviation	140
Table 7-3	Age Group Distribution of Included cases	140
Table 7-4	Indications for Hip Arthroplasty of Included Cases	141
Table 7-5	The range and mean of the postoperative follow-up period among our studied patients	142
Table 7-6	Preoperative versus Postoperative (1 year) Harris Hip Score of Included Cases	143
Table 7-7	Difference between Harris Hip Score assessed Preoperatively, as well as 1 year Postoperatively in Included Cases	144
Table 7-8	Difference between "Pain" Component of Harris Hip Score assessed Preoperatively versus 1 year Postoperatively in Included Cases	146
Table 7-9	Difference between "Function" Component of Harris Hip Score assessed Preoperatively versus 1 year Postoperatively in Included Cases	147
Table 7-10	Difference between "Range of Motion" Component of Harris Hip Score assessed Preoperatively versus 1 year Postoperatively in Included Cases	148
Table 7-11	Correlation between means of Harris Hip Score in different indications preoperatively and postoperatively.	149
Table 7-12	Correlation between means of detailed Harris Hip Score in different indications postoperatively	150
Table 7-13	Relation between different indications of our included cases and presence of complications	152
Table 7-14	Summary of Complicated Cases	152

Introduction

Dislocation is one of the most common and distressing early complications of total hip arthroplasty. The reported incidence of dislocation ranges from 0% to 10% after a primary arthroplasty and from 10% to 25% after a revision arthroplasty. A wide variety of predisposing causes and associated factors have been suggested ⁽¹⁾.

Nonsurgical treatment of the initial dislocation with a cast or brace is successful in approximately two thirds of patients. However, when surgical treatment is required for recurrent dislocation, satisfactory results have been achieved in only 60% of hips using a wide variety of techniques. Additionally, the chance of success is even less when a precise etiology cannot be determined. It is for these situations that constrained components have been considered ⁽²⁾.

By definition, constrained total hip arthroplasty components include a mechanism that locks the prosthetic femoral head into a polyethylene acetabular component. A thorough understanding of the design features of constrained components in total hip arthroplasty, indications for their use, and results and complications is essential for the effective application of this technique ⁽³⁾.

The use of constrained total hip arthroplasty components has been limited. Sivash first reported on his constrained prosthesis in 1963 in Moscow, at a conference on tuberculosis of bones and joints ⁽⁴⁾.

The use of a constrained acetabular component in total hip arthroplasty is indicated for recurrent dislocation of the hip due to soft-tissue insufficiency (capsular or abductor musculature) that is not amenable to repair or augmentation. If the abductor mechanism has been resected, then reconstruction with a constrained system may be required. Component malposition, loosening, or wear should be treated by revision of one or both components ⁽⁵⁾.

However, recurrent dislocation due to a chronic nonunion of the greater trochanter, with severe and irreparable loss of abductor muscle function, may be an indication for use of the constrained component. The use of constrained liners has been reported to help reduce the incidence of dislocation in at-risk total hip patients ⁽⁶⁾.

The constrained liner is used where more conservative soft tissue tensioning alternatives, such as femoral neck lengthening, component positioning and lateralized acetabular components, may not be effective ⁽⁷⁾.

Neurologic spasticity may seem to be an attractive indication for the use of this component, but Root et al ⁽⁸⁾ in reporting the results of total hip arthroplasty without constrained components performed in patients with cerebral palsy, found that only 2 of 15 patients had a recurrent dislocation, and both had component malposition ⁽⁸⁾.

The prophylactic use of constrained components in primary or revision total hip arthroplasty is controversial. Because good data are lacking, constrained acetabular liners should not be used routinely in these situations ⁽⁹⁾.

Theoretically, constrained acetabular components should transfer the forces that would otherwise lead to dislocation to the locking mechanism, the liner-shell interface, or the bone-prosthesis (or bone cement) interface. If the hip center is shifted laterally, which may occur with either of the two available constrained components, these forces may be increased. The reported results of constrained components have demonstrated four types of failure: loosening of the acetabular component; dissociation of the constrained liner from the shell (with redislocation); material failure (breakage) disengagement of the constraining ring (with without redislocation); and dissociation of a modular femoral head from its neck. An additional potential mode of failure is excessive wear of a thin acetabular liner interface (10).