NUMERICAL INVESTIGATIONS OF FLOW PATTERNS AND THERMAL COMFORT IN HEAVY TRUCK CABIN

 $\mathbf{B}\mathbf{y}$

Eng. Ahmed Fathy Ibrahim Omran

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2014

NUMERICAL INVESTIGATIONS OF FLOW PATTERNS AND THERMAL COMFORT IN HEAVY TRUCK CABIN

By

Eng. Ahmed Fathy Ibrahim Omran

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil Mechanical Power Engineering Department Faculty of Engineering Cairo University

Prof. Dr. Ahmed A. Medhat Ahmed Professor at Housing and Building National Research Center

Dr. Esamil M. ElBialy Mechanical Power Engineering Department Faculty of Engineering Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2014

NUMERICAL INVESTIGATIONS OF FLOW PATTERNS AND THERMAL COMFORT IN HEAVY TRUCK CABIN

By

Eng. Ahmed Fathy Ibrahim Omran

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Degree of Requirements for the MASTER OF SCIENCE

In MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Hassan Khalil

Mechanical Power Department - Faculty Of Engineering - Cairo University

(Thesis Advisor and Member)

Prof. Dr. Mahmoud Ahmed Mahmoud Fouad

Mechanical Power Department - Faculty Of Engineering - Cairo University

(Member)

Prof. Dr. Osama Ezzat Abdel Latif (Member)

(Member)

Mechanical Power Department - Faculty Of Engineering - Banha University

FACULTY OF ENGINEERING, CAIROUNIVERSITY
GIZA, EGYPT
2014

Engineer: Ahmed Fathy Ibrahim Omran

Date of Birth: 02 / 12 / 1985

Nationality: Egyptian

E-mail: eng_omran1985@yahoo.com Phone.: 01129347292 - 01200672006 Address: 82 Sakr Korish – Maadi - Cairo

Registration Date: 01 / 10 /2012

Awarding Date: / /

Degree: Master of science

Department: Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof.Dr. Ahmed Ahmed Medhat Dr. Ismael Mohamed El Bialy

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Mahmoud Ahmed Fouad

Prof. Dr. Osama Ezzat Abdel-lattif (Shoubra faculty of engineering- Benha

University)

Title of Thesis: Numerical Investigation Of Flow Patterns And Thermal Comfort In

Heavy Truck

Key Words:

(Thermal Comfort; Truck Cabin; Transient Simulation; Transportation)

Summary:

Thermal comfort in heavy truck cabins is a prime concern for designers, owners and passengers. Interior climate is one of the main comfort factors during a trip. Besides, it is also very important for intrerior safty because air temperature, air velocity and humidity affect the driver's well-being ,concern and alertness. Air conditioning and ventelation system is also responsible for providing a well occupied envieronment for both the driver and the passenger. Recently, there has been a major development in the area of HVAC systems using thermal comfort to insure that the passengers are comfortable staying in the truck cabin. More investigations of the design parameters space is conducted to bring the final design closer to the optimum.

FACKNOWLEDGMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for His generousness and support through all my life.

The author gratefully acknowledges Prof. Essam E. Khalil for his sincere and thoughtful guidance and assistance throughout the research undertaken. For all their valuable comments added to this research, many thanks are due to Prof. Osama Abdel Latif, Prof. Mahmoud Fouad and Prof. Ahmed Medhat as members of the examining committee.

Thanks are due to Dr. Esmail M. Elbialy and Eng. Osama Abdel Khalek for their support. I am very grateful to my wife Dr. Maha Magrabi and my father Mr. Fathy Omran for their support, understanding and encouragement as faithful companions.

I extend my gratitude to my dear managers and colleagues in Arab Contractors – Road Sector for their great support in both work and study through the last five years.

ACKNOWLEDGMENT

Firstly, I would like to thank Almighty ALLAH, whom I owe everything, for His generousness and support through all my life.

The author gratefully acknowledges Prof. Essam E. Khalil for his sincere and thoughtful guidance and assistance throughout the research undertaken. For all their valuable comments added to this research, many thanks are due to Prof. Osama Abdel Latif, Prof. Mahmoud Fouad and Prof. Ahmed Medhat as members of the examining committee.

Thanks are due to Dr. Esmail M. Elbialy and Eng. Osama Abdel Khalek for their support. I am very grateful to my wife Dr. Maha Magrabi and my father Mr. Fathy Omran for their support, understanding and encouragement as faithful companions.

I extend my gratitude to my dear managers and colleagues in Arab Contractors – Road Sector for their great support in both work and study through the last five years.

TABLE OF CONTENTS

ACKNOWLEDGMENT	Page i
TABLE OF CONTENTS	ii
LIST OF TABLES	
LIST OF FIGURES	vi
NOMENCLATURE	ix
ABBRIVIATIONS	xiii
ABSTRACT	xiv
1. Introduction	1
1.1. General	
1.3. Factors That Affect Passenger Thermal Comfort	
1.3.1. Air Temperature	
1.3.2. Air Velocity	
1.3.3. Mean Radiant Temperature	
1.3.4. Relative Humidity	
1.3.5. Human Activity level and Clothing Insulation	
1.3.6. Metabolic Rat	3
1.4. Automotive Air Conditioning	4
1.5. Computational Fluid Dynamics	5
1.6. Objective of the Study	
1.7. Outline of the Thesis	7

2.	LITERATURE REVIEW	8
2	2.1. Virtual manikins and CFD in research	Q
	2.2. Review of Previous Cabin Models	
	2.3. Detailed Cases	
_	2.3.1. Case Study 1	
	2.3.2. Case Study 2	
3.	Governing Equations	24
٥.	3.1. Introduction	
	3.1.1. Computational Fluid Dynamics	
	3.1.2. Fluid element and properties	
	3.2. Conservation Equations	
	3.2.1. Continuity equation	
	3.2.2. The Momentum Equation	
	3.2.3. Energy equation	
	3.3. Turbulence model	
	3.3.1. Introduction	
	3.3.2. Predicting the turbulent viscosity	
	3.4. Setting boundary conditions	
	3.5. Comparison of RANS turbulence models	
4.	Mathematical Model	46
••	4.1. Introduction	
	4.2. Model Assumptions	
	4.3. Detailed Description of the Validated Case	
	4.4. Measurements	
	4.4.1. The Hot Wire anemometer	
	4.4.2. Thermocouple Type J	
	4.5. The Experimental steps	
	4.6. Experimental Results	
	4.7. Mesh Generation	
	4.8. Grid Independence	50
	4.9. Results.	
	4.9.1. Steady-State Condition Results	
	4.9.1.1. Case 1 Steady state	
	4.9.1.2. Case 2 Steady state	
	4.9.2. Analysis of the steady – state cases	

	4.9	9.3. Transient condition Results	62
		4.9.3.1. Case 3 Transient	63
		4.9.3.2. Case 4 Transient	67
		4.9.3.3. Case 5 Transient	71
		4.9.3.4. Case 6 Transient	75
	4.10.	Summary of the results	79
5.	CONC	CLUSIONS AND SUGGESTED FUTURE WORK	80
5.			
	5.1.	INTRODUCTION	
		Conclusions of Present Work	
	5.3.	Recommendations for Future Work	81
	Refere	ences	82

List of Tables

	Page
Table 1-1 Weight factor values at different air velocities values	4
Table 1-2 Comparison between experiments and simulations	7
Table 1-2 A summary of the virtual thermal manikin methods	14
Table 2.2 Heat loss data (W/m2) from a selection of manikin segments	19
Table 2.2 Measured air velocities and temperatures	19
Table 3.1 Comparison of RANS turbulence models	54
Table 4.1 Summery of the resulted cases	79

List of Figures

Figure Description	Page
1.1 Typical Automotive Air Conditioning System	5
2.1 MANIKIN2 inside the cabin simulator exposed to the	artificial sun 17
2.2 Schematic drawing of the cabin simulator	18
2.3 The geometry of the virtual cabin	18
2.4 Temperature patterns in the cabin for the case with and	d without sun 20
2.5 The flow patterns in the cabin shown as velocity vector	ors 21
2.6 Typical flow lines released from the sensors	21
2.7 Equivalent temperatures vs. body parts	22
2.8 Outline of the studied system: portion of the touring b	ous cabin 23
2.9 Numerical grid adopted for computations	24
2.10 Iso-value surfaces of velocity close to the inlet slots	25
2.11 Motion field of air in a transversal vertical section of t	the cabin 25
2.12 Velocity distribution in a horizontal section of the cab	oin 26
2.13 Streamlines of the vorticity function	27
2.14 Temperature field at solid-fluid interfaces	27
2.15 Thermal field in a transversal section of the cabin	28
3.1 Fluid element for conservation laws	30
3.2 Mass fluxes entering and leaving an element	32
3.3 Shear stress on the fluid element	33
3.4 Forces in the x-direction	34
3.5 Work done by surface stresses in x-direction	35
3.6 Energy flux due to heat conduction	36
4.1 Model of the Cabin with Driver and passenger	47
4.2 Typical Hotwire arrangements	48
4.3 Meshing of the modeled cabin with 2.1 million	50
4.4 Static temperature of the driver face with different No.	of cells 50
4.6 Convergence of scaled residuals with 1.8 million eleme	ents 51
4.7 Convergence of scaled residuals with 2.1 million eleme	ents 51
4.8 Scaled residuals for case 1 steady – state condition	52
4.9 Convergence history of velocity magnitude for case 1	53
4.10 Convergence history of static temperature case 1	53
4.11 Contours of static temperature on plane $z\H=0$ case 1	54
4.12 Contours of static temperature on plane $z\H=0.8$ case	1 54
4.13 Contours of static temperature on plane $z\H=1$ case 1	55
4.14 Contours of velocity magnitude on plane z\H=0 case 1	55

4.15 Contours of velocity magnitude on plane z\H=0.8 case 1	56
4.16 Contours of velocity magnitude on plane z\H=1 case 1	56
4.17 Scaled residuals for case 2 steady – state conditions	57
4.18 Convergence history of velocity magnitude for case 2	57
4.19 Convergence history of static temperature case 2	58
4.20 Contours of static temperature on plane z\H=0 case 2	58
4.21 Contours of static temperature on plane z\H=0.8 case 2	59
4.22 Contours of static temperature on plane z\H=1 case 2	59
4.23 Contours of velocity magnitude on plane z\H=0 case 2	60
4.24 Contours of velocity magnitude on plane z\H=0.8 case 2	60
4.25 Contours of velocity magnitude on plane z\H=1 case 2	61
4.26 Scaled residuals for Case 3 Transient condition	63
4.27 Convergence history of static temperature Case 3	63
4.28 Contours of static temperature z/H=0 Case 3	64
4.29 Contours of static temperature z/H=0.8 Case 3	64
4.30 Contours of static temperature z/H=1 Case 3	65
4.31 Contours of velocity magnitude on plan z\H=0 Case3	65
4.32 Contours of velocity magnitude on plan z\H=0.8 Case3	66
4.33 Contours of velocity magnitude on plan z\H=1 Case3	66
4.34 Scaled residuals for Case 4 Transient Condition	67
4.35 Convergence history of static temperature Case 4	67
4.36 Contours of static temperature on plan z\H=0 Case 4	68
4.37 Contours of static temperature on plan z\H=0.8 Case 4	68
4.38 Contours of static temperature on plan z\H=1 Case 4	69
4.39 Contours of velocity magnitude at plane z\H=0 Case 4	69
4.40 Contours of velocity magnitude at plane z\H=0.8 Case 4	70
4.41 Contours of velocity magnitude at plane z\H=1 Case 4	70
4.42 Scaled residuals of Case5 Transient Condition	71
4.43 Convergence history of static temperature Case 5	71
4.44 Contours of static temperature of plane z\H=0 Case 5	72
4.45 Contours of static temperature of plane z\H=0.8 Case 5	72
4.46 Contours of static temperature of plane z\H=1. Case 5	73
4.47 Contours of velocity magnitude at plane z\H=0 Case 5	73
4.48 Contours of velocity magnitude at plane z\H=0.8 Case 5	74
4.49 Contours of velocity magnitude at plane z\H=1 Case 5	74

4.50 Scaled residuals of Case 6 Transient Condition	75
4.51 Convergence history of static temperature Case 6	75
4.52 Contours of static temperature on plane z\H=0 Case 6	76
4.53 Contours of static temperature on plane z\H=0.8 Case 6	76
4.54 Contours of static temperature on plane z\H=1 Case 6	77
4.55 Contours of velocity magnitude on plane z\H=0 Case 6	77
4.56 Contours of velocity magnitude on plane z\H=0.8 Case 6	78
4.57 Contours of velocity magnitude on plane z\H=1 Case 6	78

NOMENECLATURE

Symbol Quantity

- Br Brinkman number, Br = $\frac{\mu U_e^2}{k\Delta T}$
- C Constant
- C_p Constant pressure specific heat, kJ/kg.K
- d Distance, m
- D_{im} diffusion coefficient for species i in mixture m
- D Fluid Domain
- Total energy of a fluid particle, J
- E Dimension Less term describing the turbulent dissipation rate, ε
- \vec{F} External body forces, N
- g Gravitational acceleration, m/s2
- *G* Filter function
- G_b Generation of turbulent kinetic energy, k, due to boyancy
- G_k Turbulence kinetic energy production
- Grashohf number, $Gr_L = \frac{g\beta(T_s T_{\infty})L^3}{v^2}$
- h Enthalpy, kJ/kg
- h_j^0 enthalpy of formation of species j
- H Height, m
 - Unit tensor
- *I* Fluctuation intensity
- \vec{J}_i Diffusion flux of species j

- Turbulent Kinetic energy, m²/s²
- *k* Thermal conductivity coefficient, W/m °C
- K Dimensionless group describing the the turbulent kinetic energy, k.
- L_s Mixing length, m
- Le Lewis number, $Le_i = \frac{k}{\rho c_p D_{i,m}}$
- m Mass, kg
- Nu Nusselt number, $Nu_L = \frac{hL}{k_f}$
- p Pressure, Pa
- Pr Prandtl Number, $Pr = C_p \mu / k$
- Ra Rayleigh number, $Ra = Gr \times Pr$
- Re Reynolds Number, Re = $\rho U l / \mu$
- *RH* Relative humidity, %
- R_i Net rate of production of species i
- \Re_j Volumetric rate of creation of species j
 - Source term
- S modulus of the mean rate-of-strain tensor
- Sc Schmidt number, $Sc = \frac{V}{D_{im}}$
- t Time, s
- T Temperature, K
- T' Temperature fluctuation, K
- $\overline{u_i}$ Mean velocity components, m/s
- u_i' Fluctuating velocity components. m/s