Liposuction in Thigh Recontouring

Thesis

Submitted For Fulfillment Of The M.Sc In General surgery

By

Shereen Mohamed Shaaban

M.B., B.Ch

Faculty of Medicine

Cairo University

Supervisors

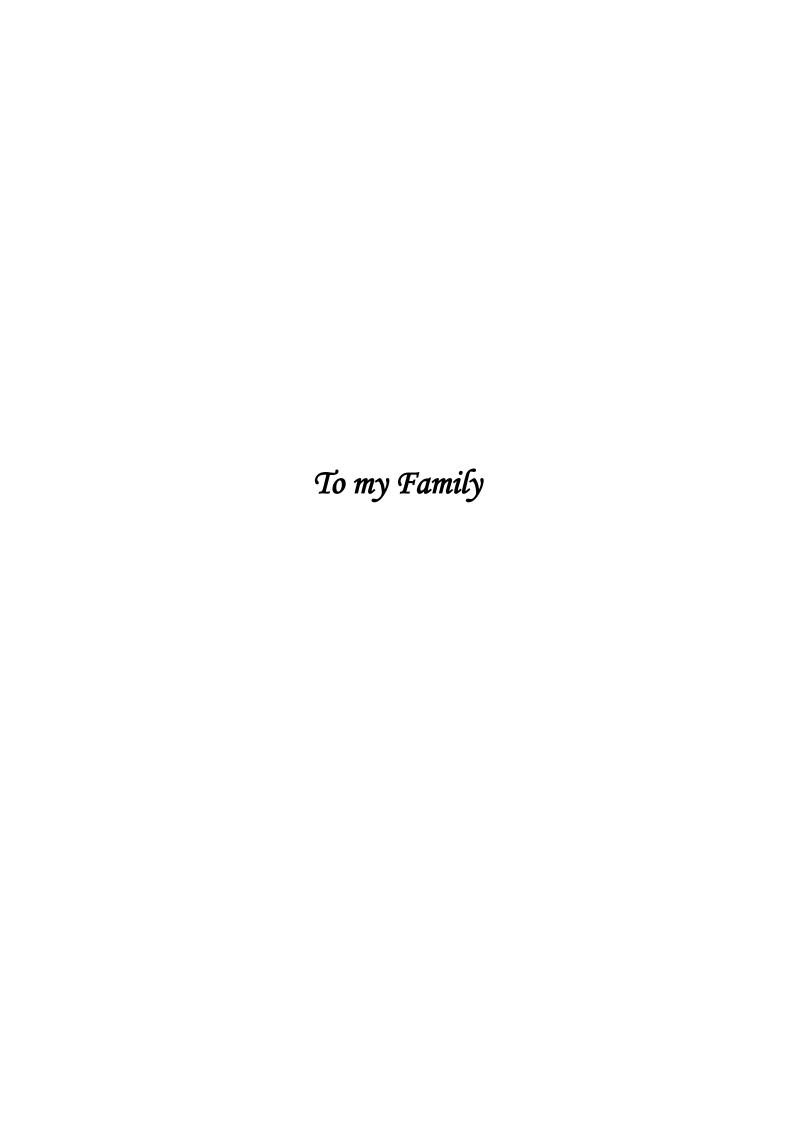
Prof. Dr. Safwat Abdelkader Salem

Professor of General & Plastic Surgery Cairo University

Prof. Dr. Abd El Nasser M. El Naggar

Professor of Plastic Surgery, Beni Suef University

Cairo University 2015


Acknowledgment

First and foremost, thanks to "GOD", who helped me to achieve this work.

My sincere gratitude to Professor Dr. Safwat Abdelkader Salem Professor of General and plastic surgery, Faculty of Medicine, Cairo University, for giving me the privilege to work under his supervision and for his kind assistance, closely following every step in this work. He supported me throughout my thesis with his patience and knowledge in a fatherly manner, without which, this work would not have its present shape.

I sincerely thank Professor Dr. Abd El Naser M. El Naggar,
Professor of Plastic Surgery, Faculty of Medicine, Cairo University, for
his most generous help, advice and valuable suggestions. I am very
grateful for his generous cooperation, very close supervision, and
valuable advice. He has been invaluable on both an academic and a
personal level, for which I am extremely grateful.

Last but not least I would like to thank my family for their help and support.

Abstract

Liposuction is one of the most common surgical procedure world wide. It provides effective contouring in torso and extremities in properly selected patients. The aim of this work is to review thigh deformities and the role of liposuction in recontouring in 15 patients. Liposuction is one of the most best methods for treatment of thigh deformities with appropriate patient selection.

Key Words

Suction assisted -Liposuction-Thigh-Recontouring

List of figures

Figure	Description	Page
1	The golden ratio	6
2	Development of fat cells	10
3	Fat lobule	11
4	Unilocular adipose tissue of a young mammal	13
5	Multilocular adipose tissue	15
6	Important functions of the adipocyte	20
7	Different functions of adipose tissue	22
8	Android and gynoid patterns in men & women	26
9	Three layers of subcutaneous tissue	29
10	Abdominal soft tissue	30
11	Superfacial fascial system details	31
12	Superfacial fascial system details	31
13	Adipose differentiation	33
14	Transcriptional control of adipocyte differentiation	34
15	Plasticity of hMADS cells	39
16	Anatomic zones of adherence	48
	The distribution of the superficial and deep fat above and	
17	below the zone of adherence in the hip and buttock region	48
18	The four generations of liposuction development	57
	Fountain sign demonstrating adequately infiltrated	
19	Tissues	66
20	The MicroAire PAL hand-piece and electric supply system	69
21	Radiofrequency devices	72
	Indications cleared by the US Food and Drug Administration	
22	cryolipolysis	77
23	Violin deformity of thigh	97
24	Details of the pyramid tip cannula	102
25	Mercedes tip cannula	103
26	Klein directional flattened cannulae	103
27	Circumferential liposuction in the thigh	106
28	Final result	119
29	Age difference between the 3 groups	120
30	Results related to age	120
31	Results in relation to concomitant diseases	121
32	Pie chart showing the percentage of complications	122
33	Pre-operative pictures case 1	124

34	Postoperative pictures of case 1	125
35	Pre-operative pictures case 2	126
35	Pre-operative pictures case 2	127
36	Postoperative pictures of case 2	128
36	Postoperative pictures case 2	129
37	Pre-operative pictures case 3	130
37	Pre-operative pictures case 3	131
38	Postoperative pictures of case 3	132
39	Preoperative pictures of case 4	133
39	Preoperative pictures of case 4	134
40	Postoperative pictures of case 4	135
40	Postoperative pictures of case 4	136

List of Tables

Table	Description	Page
1	Lidocaine toxicity	83
2	Rating of the results of the patients and surgical team	119

List of Abbreviations

ABBREVIATION		
ANP	Atrial natriuretic peptide	
ATP	Adenosine triphosphate	
BAT	Brown adipose tissue	
BMI	Body mass index	
COA	Acetyl coenzyme A	
EGF	Epidermal growth factor	
FA	Fatty acids	
GLUT-4	Glucose transporter 4	
GPDH	Glycerol-3-phosphate dehydrogenase	
LAL	Laser assisted liposuction	
PAL	Power assisted liposuction	
PAR	Peroxisome proliferator-activated receptor	
Pref-1	Preadipose factor 1	
RFAL	Radiofrequency assisted liposuction	
SAL	Suction assisted liposuction	
SVF	Stromal-vascular fraction	
TG	Triacylglycerol	
TNF-α	Tumor necrosis alpha	
UAL	Ultrasound assisted liposuction	
UCP-1	Uncoupling protein-1	
VEGF	Vascular endothelial growth factor	
WAL	Water assisted liposuction	
WAT	White adipose tissue	

Introduction

Liposuction is routinely employed by plastic surgeons concerned with removing subcutaneous adipose deposits in various areas in the body to improve figure flaws and create a more balanced physique. It is one of the most commonly performed surgical procedures in aesthetic plastic surgery. In 2012, suction lipectomy was the second most frequently performed cosmetic surgical procedure(Shirdharani SM,2014)

Liposuction removes fat through very small skin incisions, with atraumatic, blunt-tipped cannulas. Simplicity, quality of results and relatively rare complications are but a few benefits that explain its success. Its main limitation is the minimal skin retraction achieved after the procedure (*Mordon & Plot*, 2009).

The evolution of liposuction has seen refinements in technique and improvement of patient safety-related standards of care. Advances in technology have enabled surgeons to improve the safety and efficacy of the procedure. (Goldman & Gotkin, 2009)

Although suction-assisted liposuction under tumescent anesthesia remains the traditional method for body sculpting, newer technologies promise to increase efficiency, decrease surgeon fatigue, and minimize complication (*Mann et al.*, 2008).

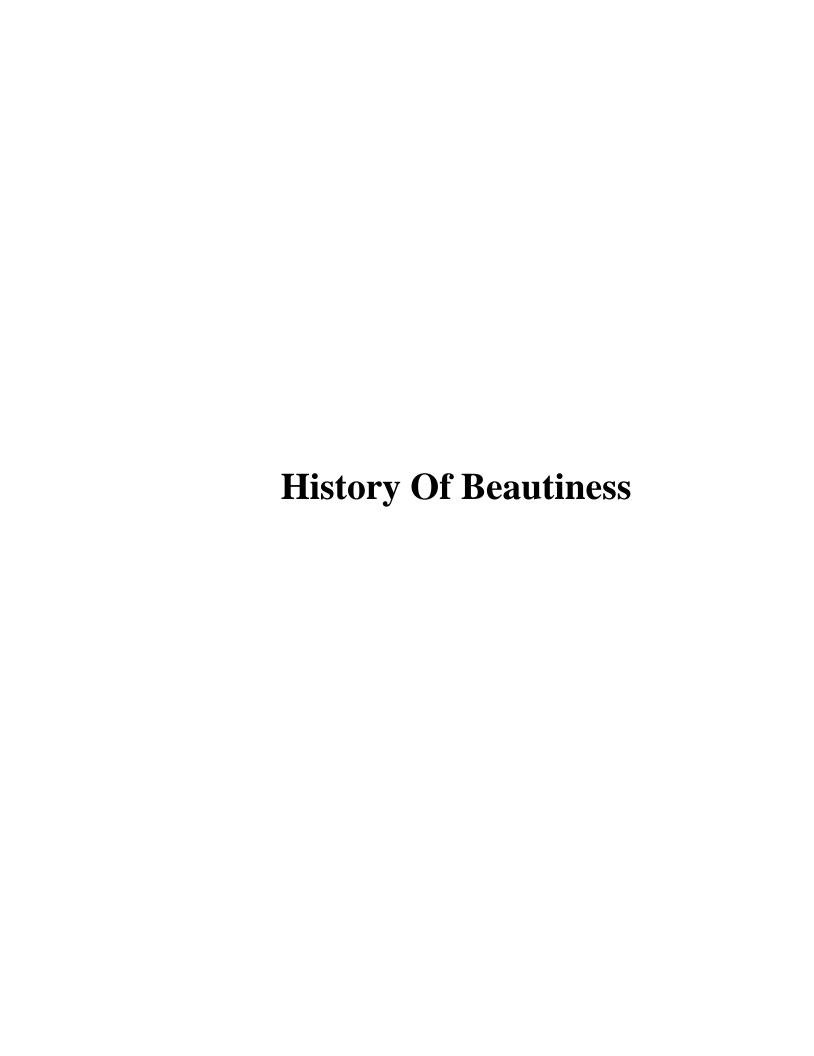
Liposuction was initially used for spot reduction of localized fat deposits in patients at or near ideal body weight. More recently however, liposuction has been used for circumferential treatment of multiple anatomic areas, resulting in more comprehensive reshaping and reduction of the body (Pitman GH & Giese SY 2006).

Women are frequently dissatisfied with the contour of their thighs and buttocks; therefore; these areas are among the most commonly requested areas for liposuction surgery ((Mary, Greenberg, 2006).

The thigh recontouring options range from liposuction to body lift combined with abdominoplasty. Decision making in thigh recontouring depends on many factors from which the most important and is considered the key to decision-making in body contouring is the skin (Nahai F, 2011).

Aim of the work:

To review evaluations of thigh deformities and the role of liposuction in recontouring.


Material and method:

Fifteen cases of upper thigh liposuction alone as part of recontouring of the thigh.

Contents

History Of Beautiness	3
Canons of Beauty	4
Fat	4
Development and structure	9
Fat physiology ,Biochemistry and tissue metabolism	17
Human Adipose Tissue & Pool of Adipocyte Progenitors	35
Lymphatics	
Distribution of lymphatics	41
Superficial Fascial System	
Superficial Fascial System	45
History Of Liposuction	49
Liposuction	58
Patient Selection	59
Patient Evaluation	60
Techniques	61
Wetting solutions	62
Fluid replacement	64
Advantages of tumescent anethesia	64
Calculation of maximum lidocaine dose	65
Lidocaine metabolism and toxicity	65
Traditional suction assisted liposuction SAL	67
Ultrasound assisted liposuction	67
Powered assisted liposuction PAL	68
Laser assisted liposuction(LAL)	70
Water-assisted liposuction(WAL)	70
Radiofrequency assisted liposuction RFAL	71
Other Trends Of Remodeling	73
Cryolipolysis	74
Injection lipolysis:	
Carbon dioxide for lipolysis	
Large-Volume Suction	78
Megaliposuction	79
Liposuction Complications	81
Surgical complications	82
Aesthetic complications	88
Thigh Recontouring	91
Patient profiles	92
Fat distribution in thighs	95
Aesthetic deformities in thigh	95
Patient Selection	98
Examination	98
Treatment Options	99
Anesthesia	99
Preoperative markings	99
Cannulas and Probes	

Surgical Endpoints	100
Fluid Management	101
Anterior and circumferential thigh	
Medial thigh liposuction	104
Lateral and Posterior Thigh	105
Postoperative Care	
Patients And Methods	108
Results	117
Cases	123
DISSCUSION	137
Conclusion	145
Summary	147
References	

Debate over time what constitutes beauty, particularly beauty of the human body, has raged since philosophy began. Interested scholars have debated the meaning of beauty for centuries. Historically, the aethetic concept of beauty is not a fixed one. It changes often, and beauty standards also are modified according to many dimensions. These are influenced by social, material, and ethnic factors, in addition to religious beliefs and customs. The many faces of beauty through the centuries differ from one civilization to another. The roles, parameters, and dimensions of beauty also differ(**Rhee & Koo 2007**).

Body measurements were used by the old Egyptians to execute their famous sculptures and paintings. Facial measurements were first performed by the Greeks as part of total body measurements for the same purpose. Rules defining the relationships between various face and body features were more clearly formulated by scholars and artists of the Renaissance based on classical Greek canons (**Vegter & Hage ,2000**).

In modern medicine, the use of neoclassical formulas of human harmonious proportions was propagated by the artist-anatomists of the 17th to the 19th centuries (Farkas, et al., 1985).

Canons of Beauty

Old Egyptians(pharoes):

Despite the claim that the Egyptian artists did not use a line system to measure parts of the human body in relation to others, the principles for the canons of the human body may have been defined by them. Some studies have demonstrated that Egyptian artists divided the available space for representation of human body figures from top to bottom into 22.25 like parts (**Vegter & Hage**, 2000).

It is suggested also that the Egyptians took the middle finger to be 1/19 of the adult man's length. However, well-defined landmarks such as the nipples, umbilicus, and knees were not localized along these divisions (**Vegter & Hage**, 2000).

Greeks:

The Greeks and Romans were heavily influenced by the Egyptians. Aristotle (384–322 B.C.) emphasized the proportions of aesthetics and described the science of reading one's character from one's bodily feature. Polycleitus (450–420 BC), a Greek sculptor obsessed with the beauty of male athletic bodies, seems to have been the first to define canons, probably based on Egyptian principles . He reported the height of the face to be 1/10 the length of the body and the whole head to be 1/8 of it. The head and neck together were to be 1/6 of the athlete's length . These proportions were expressed in his famous statue of Doryphorous (**Bashour**, 2006).

Only a few centuries ago, human features and canons were not realistically acknowledged. It was during the Renaissance period that the classical, originally Greek canons of proportion were formulated and documented by scholars and artists such as Durer, Alberti, Cousin, Audran, Francesca, Pacioli, Cennini, Savonarla, and da Vinci, among others, leading to the development of neoclassical canons defining primarily the interrelationships of facial structures (Atiyeh & Hayek, 2008) .

Because of propagation by the artistanatomists of the 17th to 19th centuries, these neoclassical canons later continued their popularity in the field of medicine. Leonardo Da Vinci (1452–1519) probably was the first to report extensively on the proportions according to which bodies and faces should ideally be shaped, and he applied these canons in his art. Albrecht Durer (1471–1528) also felt that a system of canons could be devised that would define the ideal proportions for human figures and head, face (**Jeffries, et al., 1995**).

Although Da Vinci dictated strict canons for facial and bodily proportions, he could not deny the natural variations of nature. The neoclassical canons, although a reliable rough working guide to facial proportions for artists and surgeons, are clearly not a valid system for analyzing the real human face (Jeffries, et al., 1995).

Even in art, the influence of these canons had diminished by the late 19th century. Compared with the wide range of natural proportions, the neoclassical canons represent rigid, simplistic rules. They cannot be accepted as the sole representatives of aesthetic features (Farkas, et al.,1985).