

DESIGN, DEVELOPMENT AND CALIBRATION OF TORQUE STANDARD MACHINE

By

Khaled Abdelaziz Mohamed Abdelrhem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

As Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY $\label{eq:GIZA} \textbf{GIZA}, \textbf{EGYPT}$

DESIGN, DEVELOPMENT AND CALIBRATION OF TORQUE STANDARD MACHINE

By

Khaled Abdelaziz Mohamed Abdelrhem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

As Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Mahmoud G. El-Sherbiny

Prof. Dr. Ali E. Abuelezz

Dept. of Mechanical Design and Production Eng. Dept. of Force and Material Metrology

Faculty of Engineering, Cairo University

Dept. of Force and Material Metrology

National Institute of Standards

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2016

DESIGN, DEVELOPMENT AND CALIBRATION OF TORQUE STANDARD MACHINE

by

Khaled Abdelaziz Mohamed Abdelrhem

A Thesis Submitted to the

Faculty of Engineering at Cairo University

As Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

MECHANICAL DESIGN AND PRODUCTION ENGINEERING

Approved by the

Examining Committee

Prof. Dr. Mahmoud G. El-Sherbiny, Thesis Main Advisor

Prof. Dr. Dr. Ali E. Abuelezz, Examiner

Professor of material science and metrology – National Institute of Standards

Prof. Dr. Mahmoud Abd-Rabou, Internal Examiner

Professor of material science and metrology – National Institute of Standards

FACULTY OF ENGINEERING, CAIRO UNIVERSITY $\label{eq:GIZA} \text{GIZA, EGYPT}$

2016

Engineer's Name: Khaled Abdelaziz Mohamed Abdelrhem

Date of Birth:24/4/1982Nationality:Egyptian

E-mail: khaled_fmmd_nis@yahoo.com

Phone: 01094113671

Address: Kalubia – Elkanater

Registration Date: 1/10/2010 **Awarding Date:**/2016

Degree: Doctor of Philosophy

Department: Mechanical Design and Production Engineering

Supervisors:

Prof. Mahmoud G. El-Sherbiny

Prof. Ali E. Abuelezz

Professor of material science and metrology - National Institute of Standards

Examiners:

Prof. Mahmoud G. El-Sherbiny (Thesis main advisor)

Prof. Ali E. Abuelezz (Examiner)

Professor of material science and metrology - National Institute of Standards
Porf. Mahmoud Abd-Rabou (Internal examiner)
Prof. Magdy I. Mohamed (External examiner)
Professor of material science and metrology - National Institute of Standards

Title of Thesis:

Design, development and calibration of torque standard machine

Key Words:

Torque, Calibration, Temperature, Humidity

Summary:

A NIS 1 kN·m secondary standard torque calibration machine designed earlier [1] is further developed to be a primary standard torque calibration machine. Design and construction of a lever-mass system with ends to be coaxial with the transducer axis are implemented. FEM analysis is used to check the mechanical stresses occurring in the critical components affecting the deflection in the designed lever arm. Procedures for accurate measurements torque arm are described. Expected relative expanded uncertainty is worked out to be $2 \cdot 10^{-4}$.

A study on the effect of relative humidity and temperature on the DMP40 measuring amplifier and the BN100A bridge calibration unit as one of the main sources of torque machine uncertainty is reported. Furthermore, the effect of relative humidity on the zero signal of torque transducers is investigated. Finally a study of the influence of temperature and relative humidity on the sensitivity and the characteristics of torque transducers such as residual zero torque, reversibility and creep, is presented. Equations are presented to predict the effect of temperature/relative humidity changes on the sensitivity of torque transducers.

Acknowledgement

First of all, praise is to ALLAH for without HIS will, this work would not have even started.

I wish to express my deep gratitude and respect to my supervisors Prof. Dr. Mahmoud G. El-Sherbiny and Prof. Dr. Ali Abu Elezz, for their guidance and support. Their helpful and valuable discussions were the core reason for accomplishing this work.

My deep and sincere gratitude goes to Dr. Dirk Röske for his assistance and valuable discussion. Thanks for all members of department 1.2 at Physikalisch Technische Bundesanstalt (PTB), Germany for their help and guidance all throughout the work. Special thanks to Mr. Dietmar Mauersberger and Mr. Andreas Brüge.

Thanks are due to Prof. Dr Ebtisam Hasan and my colleagues at the National Institute for Standards (NIS), Egypt, for their invaluable help and their patience and understanding all along the way.

Thanks for Ministry of higher education - Cultural affairs and Missions Sector for funding the abroad work as PhD channel cooperation between Cairo University, NIS and PTB.

Finally, I would like to express my boundless gratitude and sincere appreciations to my mother and my father and beloved sisters and brothers. Special Thanks for my darling wife, Eman, Jana and Mohamed.

Table of Contents

ACKNOWLEDGEMENT	I
TABLE OF CONTENTS	II
LIST OF FIGURES	V
LIST OF TABLES	X
NOMENCLATURE	XI
ABSTRACT	
CHAPTER 1: INTRODUCTION	1
1.1. Introduction to torque measurement	1
1.2. Basic concepts	
1.3. Calibration and traceability of measuring devices	
1.4. Aim of the work	6
CHAPTER 2 : LITERATURE REVIEW	7
2.1. Introduction	7
2.2. German torque standards (PTB)	7
2.2.1. Torque standard machines employing absolute procedure (primary standard)	
2.2.2. Torque calibration machines employing comparison procedure (Secondary standard)	10
2.3. Finland torque standards (RPO)	
2.3.1. Torque standard machines employing absolute procedure	
2.3.2. Torque standard machines employing comparison procedure	16
2.4. Italy torque standards (IMGC)	17
2.5. Egypt torque standards (NIS)	18
2.6. Summary	20
CHAPTER 3: DEVELOPING 1 KN·M PRIMARY TORQUE STANDA	
MACHINE	22
3.1. Introduction	
3.2. Developing 1 kN·m machine	
3.3. Lever design	
3.3.1. Optimization of lever arm	24

3.3.2. Sensitivity analysis of the lever arm	33
3.4. Design of assembling bolts between lever parts	33
3.4.1. Calculation of fasteners for the beam	34
3.4.2. Calculation of fasteners for the fork	34
3.5. Design of the lever end	35
3.6. Design of the loading frame	
3.6.1. Calculation of thread size of the clamping threaded end part	37
3.6.2. Calculation of the rod nut	37
3.7. Design of weights	
3.8. Lever leveling mechanism	
3.9. Proposals for measuring lever length	
3.9.1. Using CMM	
3.9.2. Using end gauge and dial gauge	
3.9.3. Using end gauge and laser interferometer	
3.9.4. Using laser tracker system	42
3.10. Proposal for determination of right and left arm lengths	
3.10.1. Using only distance sensor to ensure horizontality	43
3.10.2. Using distance sensor to ensure horizontality and torque tra	nsducer
43	
43 CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION	45
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction	45
CHAPTER 4 : PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u_{force}).	45 45
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction	45 45
CHAPTER 4 : PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u_{force}).	45 45
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION 4.1. Introduction	45 45 46 47
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u_{force}) 4.2.1. Gravity acceleration and air buoyancy force. 4.2.2. Mass. 4.3. Uncertainty due to arm length (u_{length}) 4.3.1. Arm length of both sides	45 45 46 47
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION 4.1. Introduction	45 45 46 47
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u_{force}) 4.2.1. Gravity acceleration and air buoyancy force. 4.2.2. Mass. 4.3. Uncertainty due to arm length (u_{length}) 4.3.1. Arm length of both sides	45 45 46 47 48
4.1. Introduction	45 45 46 47 47
4.1. Introduction	45 45 46 47 47 48 48
4.1. Introduction 4.2. Uncertainty due to force (u_{force})	45 45 46 47 47 48 48 48
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u _{force}) 4.2.1. Gravity acceleration and air buoyancy force 4.2.2. Mass. 4.3. Uncertainty due to arm length (u _{length}) 4.3.1. Arm length of both sides 4.3.2. Influence of inclination angels 4.3.3. Influence of the elastic deformation of arms 4.3.4. Influence of the thermal expansion of lever. 4.4. Other sources of uncertainty (u _{other})	45 45 46 47 48 48 48 49
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u _{force})	45 45 46 47 48 48 48 49 49
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction	45 45 46 47 48 48 48 49 51
CHAPTER 4: PROPOSAL FOR PERFORMANCE EVALUATION. 4.1. Introduction 4.2. Uncertainty due to force (u _{force})	45 45 46 47 48 48 48 49 51

CHAPTER 5: THE INFLUENCE OF HUMIDITY AND TEMPERAT	URE
ON THE ACCURACY OF TORQUE AUXILIARY DEVICES	54
5.1. Effect of humidity and temperature on DMP40 amplifier	55
5.1.1. Design of the experiments	55
5.1.2. Results and discussions	56
5.2. Effect of humidity and temperature on BN100A bridge calibration un	nit 70
5.2.1. Design of the experiments	70
5.2.2. Results and discussions	71
5.3. Effect of humidity on the zero signal of torque transducers	71
5.3.1. Design of the experiments	71
5.3.2. Results and discussion	71
CHAPTER 6: THE INFLUENCE OF TEMPERATURE AND HUMID	ITY
ON THE SENSITIVITY OF TORQUE TRANSDUCERS	 79
6.1. Introduction	79
6.2. Effect of temperature and humidity on the sensitivity of torque transd	lucers
6.2.1. Design of the experiments	
6.2.2. Results and discussion	
6.3. Effect of the change rate of temperature/ relative humidity on the sen	-
of torque transducers	
6.3.2. Effect of relative humidity	
6.4. Rheological model and analogy	
· ·	
CHAPTER 7: CONCLUSION AND FUTURE WORK	97
7.1. Conclusion	
7.2. Future work	99
REFERENCES	100
APPENDIX A	104
APPENDIX B	105
APPENDIX C	
APPENDIX D	
A DDENIDIY E	110

List of Figures

Figure 1.1: definition of the torque using a single force (the axis and the torque vector r	un
perpendicular to the paper plane) [4]	2
Figure 1.2: definition of the torque using a force couple (the axis and the torque vector	run
perpendicular to the paper plane) [4]	3
Figure 1.3: Pyramid of traceability	
Figure 1.4: Horizontal torque standard machine employing comparison procedure	
Figure 1.5: Torque standard machine employing absolute procedure	
Figure 2.1: One N·m torque standard machine at PTB [13]	
Figure 2.2: Components of PTB 1 kN·m torque standard machine [14]	
Figure 2.3: Twenty N·m torque calibration machine at PTB [18]	
Figure 2.4: Two kN·m torque calibration machine at PTB [19]	
Figure 2.5: Eleven Hundred kN·m torque calibration machine at PTB [21]	
Figure 2.6: Torque standard machines at RPO, a) 20 N·m and b) 2 kN·m [22]	
Figure 2.7: Counter rotating bearing in RPO's 2 kN·m torque standard machine [22]	
Figure 2.8: Overview of the vertical RPO 20 kN·m torque standard machine [23]	. 17
Figure 2.9: Schematic front view of the lever of IMGC 2 kN·m torque standard machine	e
[25]	. 18
Figure 2.10: 2 kN·m torque standard machine at IMGC [25]	. 18
Figure 2.11: The main idea of NIS torque meter [26]	. 19
Figure 2.12: NIS 1 kN·m secondary standard torque calibration machine [1]	. 20
Figure 2.13: NIS 3 kN·m secondary standard torque calibration machine [27]	. 20
Figure 3.1: Main components of primary standard torque calibration machines	
Figure 3.2: Cylindrical coaxial lever arm	
Figure 3.3: Schematic of Model 3 with dimensions	. 24
Figure 3.4: FE analysis of Model 3. Von Mises stress (left) and deflection (U1) (right)	. 24
Figure 3.5: Schematic drawing of Model 4 with dimensions	
Figure 3.6: FE analysis of Model 4. Von Mises stress (left) and deflection (U1) (right)	
Figure 3.7: Schematic drawing of Model 5 with dimensions	
Figure 3.8: FE analysis of Model 5. Von Mises stress (left) and deflection (U1) (right)	
	. 27
Figure 3.10: FE analysis of Model 6. Von Mises stress (left) and deflection (U1) (right)	
Figure 3.11: Schematic drawing of Model 7 with dimensions	
Figure 3.12: FE analysis of Model 7. Von Misses stress (left) and deflection (U1) (right	
Inguic 3.12. The analysis of Model 7. You wisses stress (left) and deflection (CT) (light	
Figure 3.13: Schematic drawing of Model 8 with dimensions	
Figure 3.14: FE analysis of Model 8. Von Misses stress (left) and deflection (U1) (right	
1 Iguic 5.14. 112 analysis of Woder 6. Von Wisses suess (left) and deflection (01) (light	
Figure 3.15: Schematic drawing of Model 9 with dimensions	
1 iguie 2.12. Deliemane diawing of model / with dimensions	. <i>-</i> /

Figure 3.16: FE analysis of Model 9. Von Misses stress (left) and deflection (U1) (ri	ght)
	29
Figure 3.17: Schematic drawing of Model 10 with dimensions	30
Figure 3.18: FE analysis of Model 10. Von Misses stress (left) and deflection (U1) (right)
	30
Figure 3.19: FE analysis of Models 3-10	
Figure 3.20: Detailed drawing of the designed lever arm	
Figure 3.21: FE analysis of the designed lever. Von Misses stress (left) and deflection	
(U1) (right)	
Figure 3.22: FE analysis of the designed lever. Deflection (U2) and deflection (U3)	_
Figure 3.23: FE approximation for the lever deflection and the machine error	
Figure 3.24: Parts of the designed lever	
Figure 3.25: The applied loads on a schematic of the designed lever	34
Figure 3.26: Schematic of the half moon (left) and the covering plate (right), with	
dimensions	
Figure 3.27: Parts of the loading frame	
Figure 3.28: Schematic of the lower beam (left) and the upper beam (right), of the lo	_
frame	
Figure 3.29: FE Von mises stress of the loading frame	
Figure 3.30: Schematic of the clamping threaded end	
Figure 3.31: Schematic of the threaded end rod	
Figure 3.32: weights (a) 100 N, (b) 50 N, (c) 20 N and (d) 5 N	
Figure 3.33: Two proximity sensors for lever arm axial movement detection	
Figure 3.34: Schematic of the proposed lever-mass system	
Figure 3.35: NIS 1 kN·m primary standard torque calibration machine	
Figure 3.36: Laser interferometer arrangement for measure lever arm length	
Figure 3.37: Illustration drawing for lever length	
Figure 3.38: Illustration drawing for lever arm length using torque transducer	
Figure 4.1: Lever's CG change due to inclination	
Figure 4.2: Relative error between NIS designed machine and PTB machine	
Figure 5.1: Effect of humidity on the DMP40 code P1 at 15 °C	
Figure 5.2: Effect of humidity on the DMP40 code P1 at 22 °C	
Figure 5.3: Effect of humidity on the DMP40 code P1 at 31 °C	
Figure 5.4: Effect of humidity on the DMP40 code P1 at 40 °C	
Figure 5.5: Effect of humidity on the DMP40 code N1 at 15 °C	
Figure 5.6: Effect of humidity on the DMP40 code N1 at 22 °C	
Figure 5.7: Effect of humidity on the DMP40 code N1 at 31 °C	
Figure 5.8: Effect of humidity on the DMP40 code N1 at 40 °C	
Figure 5.9: Effect of humidity on the DMP40 code N2 at 22 °C	
Figure 5.10: Effect of humidity on the DMP40 code P1 at 22 °C, (rep. of Fig. 5.2)	
Figure 5.11: Representation of the parameters of Eqn. (5.2)	
Figure 5.12: Experimental and estimated values of the effect of humidity on the DM	
code P1 at 15 °C	62

Figure 5.13: Experimental and estimated values of the effect of humidity on the DMP40
code P1 at 22 °C
Figure 5.14: Experimental and estimated values of the effect of humidity on the DMP40
code N2 at 22 °C
Figure 5.15: Effect of temperature on the DMP40 code P1 at 35 % humidity
Figure 5.16: Effect of temperature on the DMP40 code P1 at 50 % humidity64
Figure 5.17: Effect of temperature on the DMP40 code P1 at 80 % humidity65
Figure 5.18: Effect of temperature on the DMP40 code N1 at 35 % humidity65
Figure 5.19: Effect of temperature on the DMP40 code N2 at 35 % humidity65
Figure 5.20: Effect of temperature on the DMP40 code P1 at 50%, (representation of Fig.
5.16)
Figure 5.21: Experimental and estimated values of the effect of temperature on the
DMP40 code P1
Figure 5.22: Experimental and estimated values of the effect of temperature on the
DMP40 code N1
Figure 5.23: Experimental and estimated values of the effect of temperature on the
DMP40 code <i>N</i> 2
Figure 5.24: Experimental and estimated (based on experimental test number 0) values of
the effect of humidity and temperature on the DMP40 code P1 at -1 mV/V 69
Figure 5.25: Experimental and estimated (based on experimental test number 9) values of
the effect of humidity and temperature on the DMP40 code P1 at +1 mV/V70
Figure 5.26: Effect of temperature (left) and humidity (right) on the BN100A71
Figure 5.27: Effect of humidity on zero signal of the torque transducer code 1 (left) and 2
(right)
Figure 5.28: Effect of humidity on zero signal of the torque transducer code 3 (left) and 4
(right)
Figure 5.29: Effect of humidity on zero signal of the torque transducer code 5 (left) and 6
(right)
Figure 5.30: Effect of humidity on zero signal of the torque transducer code 7 (left) and 8
(right)
Figure 5.31: Effect of humidity on zero signal of the torque transducer code 9 (left) and
10 (right)
Figure 5.32: Average effect of humidity on zero signal of the torque transducers code 1-
10
Figure 5.33: Rheological model
Figure 5.34: Experimental and fitted results of torque transducers code 1 (left) and 5
(right). Fit1 means only one exponential term is used while Fit 2 means two
Figure 5.35: Experimental and fitted results of torque transducers code 6 (left) and 9
(right). Fit1 means only one exponential term is used while Fit 2 means two
Figure 6.1: Environmental test sequence for (a) temperature (left) and (b) relative
humidity (right) 80
Figure 6.2: Torque loading regime
Figure 6.3: Machine experimental setup for environmental tests (PTB's 20N·m machine)
81

Figure 6.4: Effect of temperature and humidity on 1 N·m torque transducer	2
Figure 6.5: Effect of temperature and humidity on 5 N·m torque transducer	2
Figure 6.6: Effect of temperature and humidity on 10 N·m torque transducer	3
Figure 6.7: Effect of temperature and humidity on 10 N·m torque transducer	3
Figure 6.8: Effect of temperature and humidity on 10 N·m torque transducer	3
Figure 6.9: Effect of temperature and humidity on 20 N·m torque transducer 84	4
Figure 6.10: Effect of temperature and humidity on 20 N·m torque transducer 84	4
Figure 6.11: Effect of temperature and humidity on the characteristics of 1 N·m torque	
transducer	5
Figure 6.12: Effect of temperature and humidity on the characteristics of 5 N·m torque	
transducer	6
Figure 6.13: Effect of temperature and humidity on the characteristics of 10 N⋅m torque	
transducer	6
Figure 6.14: Effect of temperature and humidity on the characteristics of 10 N⋅m torque	
transducer	6
Figure 6.15: Effect of temperature and humidity on the characteristics of 10 N·m torque	
transducer8	7
Figure 6.16: Effect of temperature and humidity on the characteristics of 20 N⋅m torque	
transducer8	7
Figure 6.17: Effect of temperature and humidity on the characteristics of 20 N⋅m torque	
transducer	7
Figure 6.18: Environmental test sequences showing the selected rates	8
Figure 6.19: Effect of temperature on the sensitivity of 5 N·m torque transducer for the	
two different rates	9
Figure 6.20: Effect of temperature on the sensitivity of 10 N·m torque transducer for the	
two different rates	9
Figure 6.21: Effect of temperature on the sensitivity of 20 N·m torque transducer for the	
two different rates	0
Figure 6.22: Effect of temperature on the characteristics of 5 N·m torque transducer at the	e
two different rates	1
Figure 6.23: Effect of temperature on the characteristics of 10 N·m torque transducer at	
the two different rates	1
Figure 6.24: Effect of temperature on the characteristics of 20 N·m torque transducer at	
the two different rates	1
Figure 6.25: Effect of rel. humidity on the sensitivity of 5 N·m torque transducer at the	
two different rates	2
Figure 6.26: Effect of rel. humidity on the sensitivity of 10 N·m torque transducer at the	
two different rates	2
Figure 6.27: Effect of rel. humidity on the sensitivity of 20 N·m torque transducer at the	
two different rates	3
Figure 6.28: Effect of rel. humidity on the characteristics of 5 N·m torque transducer at	
the two different rates	4
Figure 6.29: Effect of rel. humidity on the characteristics of 10 N·m torque transducer at	
the two different rates 94	4

Figure 6.30: Effect of rel. humidity on the characteristics of 20 N·m torque transduce	er at
the two different rates	94
Figure 6.31: Experimental and fitted results of 1 N·m torque transducer (#37102-03)	
Temperature results (left) and relative humidity results (right)	96
Figure 6.32: Experimental and fitted results of 10 N·m torque transducer (#36834-02	2).
Temperature results (left) and relative humidity results (right)	96
Figure D.1: The applied loads on a schematic of the designed lever	112
Figure D.2: Schematic of the half moon (left) and the covering plate (right), with	
dimensions	114
Figure D.3: Parts of the loading frame	115
Figure D.4: Schematic of the lower beam (left) and the upper beam (right), of the loa	ding
frame	115
Figure D.5: FE Von mises stress of the loading frame	115
Figure D.6: Schematic of the clamping threaded end	116
Figure D.7: Schematic of the threaded end rod	117

List of Tables

Nomenclature

A	Torque transducer characteristic constant for zero signal, mV/V.
$A_{ m H}$	Torque transducer's humidity characteristic constant for sensitivity, mV/V.
$A_{ m T}$	Torque transducer's temperature characteristic constant for sensitivity,
	mV/V.
W	Width, m.
b	Inverse ⁷ , s ⁻¹ .
$b_{ m H}$	Inverse $\tau_{\rm H}$, s ⁻¹
$b_{ m T}$	Inverse $\tau_{\rm T}$, s ⁻¹ .
C	Viscoelastic humidity constant of torque transducer's zero signal,
	$(\% \cdot s\% mV/V)$.
C_H	Viscoelastic humidity constant of the sensitivity of torque transducer,
	(%.s)/(mV/V).
C_T	Viscoelastic temperature constant of the sensitivity of torque transducer,
_	$(^{\circ}C.s)/(mV/V)$.
$d_{ m c}$	Core diameter of the screw, m.
E	Young's Modulus, Pa.
$e_{ m cg}$	Maximum change of torque transducer signal due to lever inclination,
56	N⋅m
e_{st}	Relative air pressure stability error, %.
F	Force, N.
\overrightarrow{F}	Resultant force vector.
F_1, F_2	Two forces applied at both lever sides, N.
$\overrightarrow{F_1}$	Vector of the first force.
\vec{F}_2	Vector of the second force.
f	Factor of safety
v	
glocal	local gravity acceleration at the place of NIS, m/s ² .
H_1	Starting relative humidity, %.
H_2	Final relative humidity, %.
h K	Height, m.
K K	Elastic humidity constant of torque transducer's zero signal, (% % mV/V).
K_H	Elastic humidity constant of the sensitivity of torque transducer,
**	%/(mV/V).
$K_{H,v}$	DMP40 humidity coefficient at input voltage ratio, mV/V/%.
K_T	Elastic temperature constant of the sensitivity of torque transducer,
	$^{\circ}$ C/(mV/V).
$K_{T,v}$	DMP40 temperature coefficient at input voltage ratio, mV/V/°C.