

Autoimmune Thyroiditis Among Ionizing Radiation Exposed Workers in Cardiac Catheterization Units.

Thesis

Submitted for Partial Fulfillment of the Requirements for M.D. Degree in Clinical Toxicology

BY

Mona Abdallah Ramadan

M.B.,B.Ch.

Assistant Lecturer of Occupational and Environmental Medicine, Faculty of Medicine, Cairo University

Supervised By

Prof. Dr. Sahar Ali Farahat Mohamed

Professor of Occupational and Environmental Medicine, Faculty of Medicine, Cairo University

Prof. Dr. Neveen Abdel Maksoud Mansour

Professor of Occupational and Environmental Medicine, Faculty of Medicine, Cairo University

Ass prof.Dr. Marwa Mohamed Abdel Badie Sheta

Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2016

الألتهاب المناعي في الغدة الدرقية بين العاملين المعرضين للاشعاع المؤين في وحدات قسطرة القلب

رسالة توطئة للحصول على درجة الدكتوراة في السموم الأكلينيكية

مقدمة من الطبيبة / مني عبدالله رمضان الطبيبة / مني عبدالله رمضان بكالوريوس الطب والجراحة مدرس مساعد بقسم الطب المهني والبيئي كلية الطب حامعة القاهرة

تحت أشراف

أ.د. سحر علي فرحات أستاذ الطب المهني والبيئي كلية الطب- جامعة القاهرة

أ.د. نيفين عبدالمقصود منصور أستاذ الطب المهني والبيئي كلية الطب- جامعة القاهرة

أ.د.م. مروي محمد عبدالبديع شتا أستاذ مساعد الباثولوجيا الأكلينيكية كلية الطب- جامعة القاهرة

> كلية الطب جامعة القاهرة ٢٠١٦

ACKNOLEDGEMENT

I am greatly honored to express my deepest gratitude to **Prof. Dr. Sahar Ali Farahat,** Professor of Occupational and Environmental Medicine, Cairo University. She gave me much of her valuable experiences, advice and time. No words of thanks could ever express my feeling towards her extreme support.

I would like to express my deep gratitude to **Prof. Dr. Neveen Abdel Maksoud Mansour**, Professor of Occupational and Environmental Medicine, Cairo University for her continuous encouragement, kind help and valuable guidance throughout this study. She gave me much of her time, experience, advice and support.

I have to extend my sincere thanks to **Ass prof. Dr. Marwa Mohamed Sheta**, Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University. She did not hesitate to give me much of her time, effort and support in performing the laboratory investigations of this study.

Many thanks extend to **Dr. Shaaban Abdel –Hamid Alramlawy,** Physicist at Department of Critical care medicine, Faculty of Medicine, Cairo University for his generous cooperation and help in performing the environmental measurements of this study.

I am grateful to all examined group of this work for their cooperation and help.

My thanks extend also to all the staff members of Occupational and Environmental Medicine Department, Cairo University for their advice, support and encouragement.

Finally, thanks from all my heart for all my family for their understanding, support and great help all through this work.

CONTENTS

	PAGE
LIST OF TABLES	
LIST OF FIGURES	
LIST OF ABBREVIATION	
ABSTRACT	
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	4
• Ionizing radiation and its sources	4
Biological effect of ionizing radiation	18
• Immune-modulation by ionizing radiation	37
Autoimmune Thyroid Disease	54
SUBJECTS AND METHODS	70
RESULTS	78
DISCUSSION	94
CONCLUSION	109
RECOMMENDATIONS	110
SUMMARY	112
REFERENCES	115
ANNEX	140
ARARIC SIIMMARV	142

LIST OF TABLES

		Page
Table (2:1):	Sources of background radiation	10
Table (2:2):	Typical effective dose estimates for select procedures performed	11
	using ionizing radiation	
Table (2:3):	Recommendation on limits for exposure to ionizing radiation	14
Table (2:4):	Subsyndromes in four phases of ARS	28
Table (2:5):	Characteristics molecules produced by CD8 ⁺ and CD4 ⁺ - T cells	40
Table (2:6):	Physiological effects of the thyroid hormones	56
Table (4:1):	The mean dose rate and the exposure dose of scattered ionizing	78
	radiation at different job related point (doctors and nurses in the	
	operating room and technicians in control room) in the 4	
	cathetrization rooms	
Table (4:2):	Mean± SD of cumulative exposure index (CMI) for scattered	81
	ionizing radiation and working duration among different job	
	categories of exposed group.	
Table (4:3):	General Demographic characteristics of the studied groups	82
	(exposed=47) and (control=47)	
Table (4:4):	The frequency distribution of different clinical parameters according	84
	to history taking and clinical examination among the studied groups	
Table (4:5):	The frequency distribution of thyroid manifestation among the	85
	exposed and control groups	
Table (4:6):	Mean± SD of males and females offspring among exposed and	86
	control subjects	
Table (4:7):	Mean± SD of thyroid function parameters (TSH, T3, T4) and anti-	87
	thyroxiperoxidase antibodies (TPO) among exposed and control	
	subjects	
Table (4:8):	Means ±SD of some immunological parameters (CD%, IL2, IL10	88
	and IFNγ) among exposed and control subjects	
Table (4:9):	Correlation coefficient between anti TPO on one hand and thyroid	89
	function parameters, IL2, IL10, IFN γ and TLDs readings on the other	
	hand among exposed group	

Table (4:10):	Correlation coefficient between TSH on one hand and duration of exposure, T3, T4, IL2, IL10, IFNy and TLDs measurements on the other hand among exposed group	90
Table (4:11):	ANOVA of mean ±SD of thyroid function (TSH, T3 and T4) and anti TPO among different categories of the studied groups	91
Table (4:12):	ANOVA of mean \pm SD of immunological parameter (IL2, IL10, INF γ and CD4%) among the different categories of the studied groups	92
Table (4:13):	Post hoc test of the mean ±SD of the serum anti-TPO, T3, IL2, IL10, IFNγ and CD4% among different categories of the studied groups	93

LIST OF FIGURES

		Page
Figure (2:1):	The electromagnetic spectrum	4
Figure (2:2):	Tissue weighting factors	7
Figure (2:3):	Sources of radiation exposure	12
Figure (2:4):	Radiation exposure distribution in interventional cardiologist	17
Figure (2:5):	Mechanism of radiation damage	20
Figure (2:6):	carcinogenic process	31
Figure (2:7):	A simplified model of radiation induced apoptosis pathways	45
Figure (2:8):	Dendritic cell-T cell interaction and its variation upon irradiation	52
Figure (2:9):	The thyroid gland	54
Figure (2:10):	Regulation of the thyroid hormones	57
Figure (2:11):	Factors affecting the thyroid function	58
Figure (2:12):	Pathogenesis of autoimmune thyroid disease	64
Figure (2:13):	A scheme of autoimmune events in Hashimoto's thyroiditis	65
Figure (2:14):	Symptoms and signs of hypo and hyperthyroidism	68
Figure (3:1):	The operating catheterization room	73
Figure (3:2):	The control room	73
Figure (4:1):	The mean exposure dose for the scattered ionizing radiation in	79
	(mSv/year) among the different categories of exposed groups.	
Figure (4:2):	The mean value of TLDs readings in (mSv) among different	80
	categories of exposed groups over year 2012, 2013 and 2014.	
Figure (4:3):	The frequency of job categories among the studied groups.	83

LIST OF ABBREVIATIONS

SI: International system of units

AITD: Autoimmune thyroid disease

ANC: Absolute neutrophil count

Anti-TPO: Anti-thyroxiperoxidase

APC: Antigen presenting cells

ARS: Acute radiation syndrome

BCL: B cell lymphoma

Bq: Becquerel

C: Complement

cAMP: cyclic adenosine monophosphate

CD: Cluster Differentiation

Ci: Curie

CT: Computed Tomography

CTLA: Cytotoxic T-lymphocyte association-protein

CVD: Cardiovascular disease

DC: Dendritic cells

DNA: Deoxyribo nucleic acid

Dps: Disintegration per second

E Effective dose

ECLIA: Electro-Chemi-Luminescence Immuno-Assay

EDTA: Ethylene diamine tetra acetate

ELISA: Enzyme-Linked Immuno-Sorbent Assay

ERCP: Endoscopic Retrograde Cholangio-Pancreatography

Fc: Fragment crystalizable

FNAb: Fine needle aspiration biopsy

GD: Graves' disease

GJIC: Gap-Junction Intracellular Communication

GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor

Gy: Gray

HD-IR: High dose ionizing radiation

HLA: Human leukocyte Antigen

HLADR: Human Leukocyte Antigen-antigen D Related

HRP: Horseradish peroxidase

HT: Hashimoto's thyroiditis

ICRP: International Commission on Radiological Protection

ICs: Interventional cardiologists

IFN γ : Interferon γ

Ig: Immunoglobulin

IL: Interleukin

IR: Ionizing radiation

KD: Kilodalton

LD: Lethal dose

LDR: Low dose radiation

LET: Linear energy transfer

MHC: Major histocompatibility complex

NK: Natural killer

PBS: Phosphate-buffered saline

PCI: Percutaneous coronary intervention

PCNA: Proliferating cell nuclear antigen

PIP2: Phosphatidyl inositol-bisphosphate

PPT: Post partum thyroiditis

PTH: Parathyroid hormone

PTPN: protein tyrosine phosphatases non-receptor

Rad: Radiation absorbed dose

Rem: Roentgen equivalent man

RF: Radiofrequency

ROS: Reactive oxygen species

Sv: Sievert

T3: Triiodothyronine

T4: Thyroxin

TAO: Thyroid associated orbitopathy

TBAbs: Thyroid stimulation-Blocking Antibodies

TBS: Tris-buffered saline

Tc: Technetium

TCR: T-cell Receptor

Tg: Thyroglobin

Th: Thelper

TIPS: Transjugular intrahepatic portosystemic shunt

TLD: Thermo-luminescent dosimeter

TMB: Tetra-methyl benzidine

TNF: Tumor necrosis factor

TRAIL: TNF-related apoptosis-inducing ligand

TRH: Thyrotrophin-releasing hormone

TSAbs: Thyroid Stimulating Auto-antibodies

TSH: Thyroid stimulating hormone

TSH-R: Thyroid stimulating hormone receptor

UR I: Upper respiratory tract infection

WR: Radiation weighting factor

ABSTRACT

Introduction: It is well known that ionizing radiation IR exposure increases the risk of thyroid cancer; however less is known about its role in development of autoimmune thyroiditis. Objective: To assess the effects of occupational exposure to ionizing radiation on thyroid functions and the possibility of having autoimmune thyroiditis. Methods: a group of 47 cardiac catheterization workers (19 physicians, 15 nurses and 13 technicians) and another 47 job, age, and sex matched controls were subjected to investigating the serum level of T3, T4, TSH, anti-TPO, Th₁ cytokines (IL2, IFNγ), Th₂ cytokines (IL10) and CD4%. Area monitoring of IR was also done using portable dose rate meter to measure local scattered radiation. Besides, annual personal exposure was monitored by TLD readings over the last 3 years Results: Area monitoring showed high level of scattered ionizing radiation inside the cardiac catheterization rooms, although dosimeter readings were within the acceptable level over the three years. Statistically significant higher level of serum TSH, anti-TPO, IL2, IFNy along with statistically significant lower levels of T3, IL10 and CD4% were found among the exposed compared to control groups (P<0.05). Significant positive correlation was detected between the level of anti-TPO and each of cumulative exposure index (CMI) (r=0.378 P<0.05) ,TSH (r= 0.876 P<0.001), IL2 (r=0.847 P<0.001), and IFN γ (r=0.685 P<0.001). Moreover, a significant negative correlation was found between anti-TPO and each of T3 (r= -0.814 P<0.001) and T4(r= -0.324 P<0.05). ANOVA and Post Hoc tests showed significantly higher level of anti-TPO and Th₁ cytokines with significantly lower levels of T3, CD4% and IL10 among the physicians compared to control group Conclusion: Autoimmune thyroiditis might be one of the hazards that can be attributed to occupational exposure to ionizing radiation especially in cardiac catheterization units.

Key wards: Ionizing radiation- Autoimmune thyroiditis- T3- T4- TSH- Anti-TPO-IL2- IFN γ -IL10 - CD4%.

Introduction

Medical exposure from X-rays and nuclear medicine is the largest manmade source of radiation exposure (Mettler et al., 2009). Such exposure is of significant concern for interventional cardiologists due to increasing workloads and complexity of procedures over the last decade (Cousins et al., 2013). Moreover, those interventional cardiologists encounter much more radiation exposure than most other medical staff due to their working position close to the X-ray beam and the patient (the source of scatter radiation) (Rehani and Ortiz-Lopez, 2006).

Radiation exposure can exert a number of adverse effects on many tissues in the body. One of the target organs for radiation-related damage is the thyroid gland as it receives a considerable radiation dose from scattered radiation probably due to its anatomical site (**Eheman et al., 2003**).

There is a general consensus that there is a high prevalence of thyroid cancer, thyroid nodules formation and thyroiditis in workers who were occupationally exposed to radiation, particularly among X-ray workers and other health staff exposed to radiation in laboratories (Paolo et al., 2005). Furthermore, autoimmune thyroid disease has been linked to therapeutic medical radiation, as well as environmental radiation exposure but the mechanisms and pathways involved in that relation remain not well clear (Brent, 2010).

Autoimmune thyroid disease is the most common organ-specific autoimmune disease and characterized by the presence auto-antibodies directed against several major thyroid antigen. Among those, are the Anti-TPO auto-antibodies which found in over 90% of patients with autoimmune hypothyroidism and 70% of patient with Graves' disease (Hawa et al., 2006).

Moreover, a dose-response relation between radiation exposure and the prevalence of positive anti-thyroxiperoxidase antibodies was found in some studies (Vo lzke et al., 2005).

Also, the role of cytokines in the development of autoimmune thyroid disorders has been widely explained (Stassi and de Maria, 2002). In case of Hashimoto's thyroiditis, a Th₁ disease, the cytokine IFNγ appears to play a crucial role in the pathology of the disease while in the Graves' disease, a Th₂ disease, the cytokines IL4 and IL-10 are responsible for the pathology. However, these cytokines could be up- or down-regulated by low dose radiation (LDR) (Hayashi et al., 2005).

Ionizing radiation can produce functional alteration of the immune system and breaks self-tolerance with induction of autoimmune disease among that is the thyroid gland which is one of the susceptible organs for the deleterious effect of ionizing radiation. However, the association and pathogenesis of radiation induce autoimmune thyroiditis is still not well clear, therefore, in this work we estimated the level of thyroid hormones, anti TPO and some cytokines searching for that association and possible immune mechanism.

Aim of the work

The overall aim of this study is to investigate the effect of occupational exposure to ionizing radiation on the thyroid gland function and the risk for autoimmune thyroiditis development.

objectives:

- 1. Assess radiation exposure among cardiac catheterization's workers.
- **2.** Assess thyroid gland integrity among ionizing radiation exposed workers in cardiac catheterization units.
- **3.** Assess the level of anti-thyroxiperoxiase antibody and its relation to radiation exposure.
- **4.** Assess the balance between Th1 and Th2 immune response through measuring some related cytokines with investigating their relation to radiation exposure.

Background

Radiation is the propagation or emission of energy in the form of particles or waves travelling through space. Electromagnetic radiation is a type of radiation in which there are self-propagating waves, and is further classified on the electromagnetic spectrum based on the wavelength, frequency, or energy of these waves, ranging from radio waves (highest wavelengths, lowest frequencies and energies) to gamma rays and X-rays (lowest wavelengths, highest frequencies and energies) (ARPANSA, 2011).

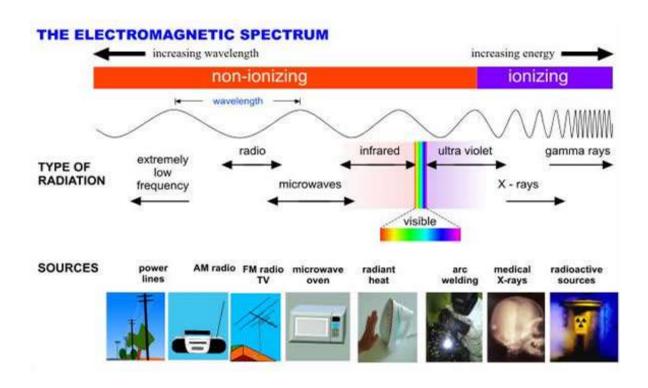


Figure (2:1): The electromagnetic spectrum, (ARPANSA, 2012).

Another classification of radiation is the distinction between ionizing and non-ionizing radiation. Ionizing radiation has enough energy to ionize atoms, e.g. to enable an electron to move out of its orbit, whereas non-ionizing radiation does not. Most types of electromagnetic radiation, such as visible light, are non-ionizing, but higher energy electromagnetic radiation such as gamma rays and X-rays is ionizing (ARPANSA, 2012).