Effect Of Vitamin D Status and Serum Ferritin Concentration On Early Virological Response Of Chronic Hepatitis C Virus To Standard Care Therapy

Thesis by
Eman Soliman Mohamed
M.B. B. Ch
Faculty of medicine
Ain shams university

For partial fulfillment of Master degree in internal medicine

Under supervision of

Prof Dr. Ahmed Shawki El-Sawaby
Professor of internal medicine and gastroenterology
Faculty of medicine- Ain Shams University

Dr. Amir Helmy Samy Assistant Prof of internal medicine and gastroenterology Faculty of medicine- Ain Shams University

Dr .Khaled Amr Zaki Lecturer of internal medicine and gastroenterology Faculty of medicine- Ain Shams Universit

Department of internal medicine
Faculty of medicine
Ain Shams University
2015

تأثير حالة فيتامين د و تركيز الفريتين بالمصل علي الاستجابة الفيروسية المبكرة للإصابة بالالتهاب الكبدي الفيروسي المزمن سيي للهعلاج و الرعاية القياسية

ر ســـالة توطئة للحصول علي درجة الماجستير في أمر اض الباطنة العامة مقدمة من الطبيبة / ايمان سليمان محمد

تح*ت إشراف*

أ د/أحمد شوقي الصوابي أستاذ الباطرة العامة و الجهاز الهضمي والكبد كلية الطب - جامعة عين شمس

أ د/ أمي حلمي سامي أد/ أمي والكبد أستاذ م الباطنة العامة و الجهاز الهضمي والكبد كلية الطب - جامعة عين شمس

د/خالد عمرو زكي مدرس الباطن العامة و الجهاز الهضمي والكبد كلية الطب - جامعة عين شمس كلية الطب عين شمس حلية الطب جامعة عين شمس

2015

ACKNOLEDGEMENTS CONTENTS

Content	Page
· Introduction	1
- Aim of the Work	7
· Review of Literature	
Chapter 1: Hepatitis C Virus	8
Chapter 2: Management of HCV Infection	24
Chapter 3: vitamin D level in chronic hepatitis c	89
Chapter 4: serum iron and ferritin in chronic hepatitis	c99
- Patients and methods	110
· Results	119
· Discussion	139
- Summary	151
· conclusion	153
· References	154
 Arabic summary 	

LIST OF Figures

Figure	No. Title	Page
1-	Hepatitis C virus in Egypt compared to other countri	es in the
	world 11	
2-	Natural history of HCV infection	13
3-	The Hepatitis C Virus (HCV) Lifecycle	15
4-	Pathology of cryoglobulinemia	33
5-	Skin lesion in cryoglobulinemia	34
6-	Pathogenesis of hepatitis C virus-related lymphoprolifera	ntive
	disorders	36
7-	Porphyria Cutanea Tarda	38
8-	Oral and skin LP	38
9-	Mechanism of interferon action	54
10-	Chemical structure of ribavirin	57
11-	Response to interferon and ribavirin	78
12-	Vitamin D metabolism	90
13-	Percentage of responders and non-responders at 12 week	s 124
14-	Mean of vitamin D at different treatment	
	stages126	
15-	Maen of serum ferritin at different treatment stages	126
16-	Spearman's linear correlation between serum ferritin	
	and BMI in EVR group	130
17-	Spearman's linear correlation between (25-OH) vitamin T.bil in EVR group	
18-	Spearman's linear correlation between (25-OH) vitamin	D and
	PCRweek 12 in EVR group	132

Cont. Of LIST OF Figures

Figure	No. Title	Page
19-	Spearman's linear correlation between (25-OH) vir	tamin D and
	Hb level week 12	133
20-	ROC curve of week 0 serum ferritin for predicting EVR	134
21-	ROC curve of week 0 (25-OH)vitamin D for predicting E	VR135
22-	Comparison of AUC of ROC analysis of week 0 s	erum ferritin
	and (25-OH)vitamin D for prediction of EVR	136
23-	Comparison of AUC of ROC analysis of week 4 s	erum ferritin
	and (25-OH)vitamin D for prediction of EVR	137
24-	Comparison of AUC of ROC analysis of week 12 s	erum ferritin
	and (25-OH)vitamin D for prediction of EVR	138

LIST OF Tables

Tabl	e No.	Title	Page
1-	Risk Facto	ors for Developing Chronic HCV Infection	25
2-		assification of HCV	
3-		RS ASSOCIATED WITH PROGRESSION OF CHRON	
4-		oproved Qualitative Assays for Detection of HCV R	
5-	•	etation of HCV Assays	
6-	•	cal Responses during Therapy and Definitions	
7-	_	of vitamin D	
8-	Descrip	tion of laboratory data of the patients at differe	nt weeks of
	treatme	nt	123
9-	Compa	rison between EVR and non EVR at 12 weeks	as regard
	differen	t parameters	125
10-	Regress	sion analysis of different variables to study inde	ependent
	factor a	ssociated with EVR	127
11-	Compai	rison between vitamin D levels at week 0, 4 and	d 12
	weeks.		127
12-	Compa	rison between ferritin levels at week 0, 4 and 12	2
	weeks.		128
13-		ation between serum ferritin and Vitamin D at of treatment with different parameters	
14-	Using of	f receiver operating characteristic (ROC) curve	for (25-OH)
vit	amin D an	d serum in different weeks of treatment in pred	liction of
	EVR		134

Cont of.LIST OF Tables

Tab	ole No.	Title	Page
15-	5- Comparison of AUC of ROC analysis of (25-OH) vi		-OH) vitamin D and
	ferritin in di	fferent weeks of treatment for	evaluation of diagnostic
	performance	accuracy in prediction of EV	R 136

Thanks **ALLAH**for giving me strength and patience to fulfill this job

May You (ALLAH) accept it from me and consider itgood and useful

To my lovely parents and husband, thank you for your constant inspiration and support, I couldn't have done this without

you.....

To all who will read this one day and find it useful,

Thank you for your time and trust....

Acknowledgment

Very special thanks to **Prof.Dr.**, **Ahmed Shawki ELSawaby**, Professor of internal medicine and gastroenterology Faculty of medicine- Ain Shams University for his constanteffort and advice which extended from the time of choosing the topic and through the whole period of the practical part, writing and revision. I really learned a lot from you.

I am also deeply grateful **Dr. Amir Helmy Samy**

Assistant Prof of internal medicine and gastroenterology Faculty of medicine- Ain Shams University for his kindness, encouragement, valuable assistance and accurate revision.

Special thanks to **Dr** .**Khaled Amr Zaki** Lecturer of internal medicine and gastroenterology Faculty of medicine- Ain Shams University.

INTRODUCTION

Hepatitis C is caused by RNA flavivirus. Acute symptomatic infection with hepatitis C is rare, most individuals will be unaware of when they became infected and are only identified when they develop chronic liver disease. (Shiffman et al., 2003)

Hepatitis C virus (HCV) is a major public health problem and a leading cause of chronic liver disease. (Williams 2006)

An estimated 180 million people are infected worldwide, the prevalence of HCV infection between the years 1999 and 2002 was 1.6%, equating to about 4.1 million persons positive for antibody to hepatitis C (anti-HCV), 80% of who are estimated to be viremic. (Armstrong et al., 2006)

Hepatitis C is the principal cause of death from liver disease and the leading indication for liver transplantation. (**Kim**, 2002)

Some calculations suggest that mortality related to HCV infection (death from liver failure or hepatocellular carcinoma) will continue to increase over the next two decades. (Deuffic et al., 2007)

The optimal approach to detecting HCV infection is to screen persons for a history of risk of exposure to the virus, and to test selected individuals who have an identifiable risk factor. (Alter et al., 2004)

Currently, injection drug use is the primary mode of HCV transmission. Thus, all persons who use or have used illicit injection drugs in the present or in the past, even if only once, as well as intranasal drug users who share paraphernalia, should be tested for HCV infection. (Armstrong et al., 2006)

Individuals who have received a blood or blood component transfusion or an organ transplant before 1992 should also be tested. (Petta et al., 2010)

With the introduction of sensitive tests to screen blood donors for HCV antibodies in 1992, transfusion-transmission of HCV has become rare. (Wasley et al., 2005).

Persons with hemophilia should be tested for HCV infection if blood products were received before 1987, after which time, viral inactivation procedures were implemented. (Goedert et al., 2007)

Similarly, individuals with unexplained elevations of the aminotransferase levels (alanine and/or aspartate aminotransferase; ALT/AST), those ever on hemodialysis, children born to HCV-infected mothers, or those with human immunodeficiency virus (HIV)

infection should be tested for the presence of HCV infection. (Mast et al., 2005)

Other potential sources of HCV transmission include exposure to an infected sexual partner or multiple sexual partners; exposure among health care workers to HCV contaminated blood and blood products, and tattooing. (Workowski and Berman 2006)

This is a list of persons who should be routinely screened for HCV infection. For some groups, such as those with a history of injection drug use or persons with hemophilia, the prevalence of HCV is high (90%). For other groups (recipients of blood transfusions prior to 1992), the prevalence is moderate (10%). For still others, (persons with needle stick exposure, sexual partners of HCV-infected persons), the prevalence is low (1% to 5%).

Persons for Whom HCV Screening is Recommended:

- Persons who have injected illicit drugs in the recent and remote past, including those who injected only once and don't consider themselves to be drug users.
- Persons with hemophilia who received clotting factor concentrate prior to 1987.
- Persons with HIV.

- Persons who ever been on hemodialysis.
- Persons with unexplained abnormal aminotransferase levels.
- Persons who received a transfusion of blood or blood products.
- Children born to HCV -infected mothers.
- Health care, emergency medical and public safety workers after a needle stick injury or mucosal exposure to HCV- positive blood.
- Persons who received organ transplantation. (conte et al.,2009)

Chronic hepatitis C affects 170 million people worldwide and is a major cause of chronic liver disease. Combination therapy with pegylated interferon (PEG-IFN) alpha and ribavirin is the current standard of care, but it has limited efficacy and a high cost. During the last decade, several modifiable and non-modifiable parameters have been identified to help clinicians predict the probability of achieving a sustained viral response (SVR) prior to treatment in individual patients. (lambrecht et al., 2011)

Two new predictors of response to antiviral treatment have emerged:

1- Serum ferritin concentration:

HCV interferes with the host's iron metabolism, and hepatic iron measures were correlated with the grade and stage, as well as with the treatment outcome, of CHC. (Bonkovsky et al., 2006)

Infection with HCV leads to iron accumulation in the liver and increased serum ferritin levels, which can be, at least partially, explained by down-regulation of hepcidin, a key regulator of iron homeostasis. (Nishina et al., 2008)

However, serum ferritin is also frequently elevated in inflammatory conditions. Excess iron in the liver promotes liver inflammation, oxidative stress, and mitochondrial dysfunction. (**Drakesmith and Prentice 2008**)

2- Serum vitamin D concentration:

Is also of great interest because it is easily modifiable by dietary supplementation. Based on several recent reports demonstrating that vitamin D appears to possess important immunomediated and antiproliferative effects. (Petta et al., 2010)