

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.491

STUDIES ON THE EFFECTS OF GENOTYPIC VARIABILITY, SOURCE OF EXPLANT, AND CULTURE MEDIUM ON CALLUS GROWTH AND ORGANOGENIC CAPACITY OF Cucumis sativus L. PLANTS

BY

Mona Abdel-Rahman Ismail

B.Sc. in Botany
Suez Canal University

A Thesis Submitted in Partial Fulfillment
of the Requirements for
The Degree of Master of Science

In Botany
(Plant Tissue Culture)

Botany Department
Faculty of Science
Suez Canal University
2000

STUDIES ON THE EFFECTS OF GENOTYPIC VARIABILITY, SOURCE OF EXPLANT, AND CULTURE MEDIUM ON CALLUS GROWTH AND ORGANOGENIC CAPACITY OF Cucumis sativus L. PLANTS

BY

Mona Abdel-Rahman Ismail

B.Sc. in Botany
Suez Canal University

Supervised by

Dr. A. I. Al-Gazzar

Prof. of Plant Taxonomy

Suez Canal University

Dr. M. H. Mansour

Prof. of Phytochemistry M.A. Helm

Suez Canal University

Dr. F. H. Mohamed

Assoc. Prof. of Horticulture

Suez Canal University

Botany Department

Faculty of Science

Suez Canal University

2000

APPROVAL SHEET

STUDIES ON THE EFFECTS OF GENOTYPIC VARIABILITY, SOURCE OF EXPLANT, AND CULTURE MEDIUM ON CALLUS GROWTH AND ORGANOGENIC **CAPACITY OF Cucumis sativus L. PLANTS**

BY

Mona Abdel-Rahman Ismail

B.Sc. in Botany

Suez Canal University

The present M. Sc. Thesis has been approved by:

Prof. Dr. / Mahdie F. Cabh

Prof. Dr. / A-H. Gomes

Dr. / Que

Date/ 14/6/2000

ACKNOWLEDGEMENT

The author is deeply indebted to her supervising committee members, Prof. A. I. Al-Gazzar, Prof. M. H. Mansour and Assoc. Prof. F. H. Mohamed for providing their valuable guidance, support, facilities, assistance and patience throughout this study.

Gratitudes are expressed to The Dean of Faculty of Science and The Head of Botany Department at Sucz Canal University for their kindness and understanding.

Further gratitudes are extended to the teamwork of the tissue culture laboratory of Horticulture Department, Suez Canal University for their sincere help and fruitful assistance.

Special thanks are also extended to everybody in Botany Department,

Faculty of Science, Suez Canal University for their guidance and support.

Deepest gratitudes are extended to the author's family, her husband, daughters and sons for their endless love and support through this study.

Dedicated to

My family,

ABBREVIATIONS

+R Presence of root

+S Presence of shoot

2,4,5-T 2,4,5 Trichlorophenoxy acetic acid

2,4-D 2,4 dichlorophenoxy acetic acid

ABA Abscisic Acid

Base of cotyledonary leaf

B5 Gumborg medium

BAP Benzyladenine Purine

CIM Callus induction medium

Cm Centimeter

cv. Cultivar

DNA Deoxyribonucleic Acid

EIM Embryo induction medium

Fig. Figure

FW Fresh Weight

g/l Gram per Liter

GA Gibberellic Acid

GLM General Linear Model

H Hour

HS Hypocotyl Segment

IAA Indol acetic acid

K or kin Kinetin (6- furfuryl- amino Purine)

LSD Least Significant Difference

M Middle of cotyledonary leaf

Mg Milligram

mg/l Milligram per Liter

Min Minute

mm Millimeter

MS Murashige and Skoog medium (1962)

MS+GA Murashige and Skoog medium + Gibberellic Acid

NAA α -naphthalene acetic acid

RCB Randomized Complete Block

SAS Statistical Analysis System

ST Shoot Tip

Tip of cotyledonary leaf

μ Micron

μ M Micromolar

v/v Percent (volume in volume)

w/v Percent (weight in volume)

2ip 6- $\gamma \gamma$ – dimelhylallylaminopurine (2ip)

IPA Isopentyl adenine

VAR. Variety

CONTENTS

	Page
INTRODUCTION	1
Objectives	2
LITERATURE REVIEW	3
Genotypic variability	6
Explant source	9
Plant growth regulators	12
Somatic embryogenesis and plant regeneration	16
MATERIALS & METHODS	25
1. Plant Materials	25
1.1. Plant cultivation	25
1.2. Explant Selection	26
2. Culture Media	26
2.1. Callus Induction Medium (CIM)	26
2.2. Embryo Induction Medium (EIM)	26
2.3. Regeneration Medium	27
3. Experiments	27
3.1. First Experiment: Effect of Plant growth Regulators.	27
3.2. Second Experiment: Induction of Embryonic and	
Organogenic Callus.	28
3.3. Third Experiment: Effect of BA, Explant type, and	
Genotype on Callus Growth and Organogenic capacity.	31
3.4. Rooting of regenerated shoots.	32

RESULTS & DISCUSSION	33
1. First Experiment	33
1.1. Results with the cultivar Magdy.	33
1.2. Results with the cultivar Medina	39
2. Second Experiment:	44
2.1. Results with RS 219 genotype	45
2.2. Results with RS 324 genotype	49
2.3. Results with Good Shot genotype	54
2.4. Main differences between different genotypes	58
2.5. Histological Analysis	65
3. Third experiment: Effect of BA concentrations on the callus	
growth and organoigenesis from different explants and genotypes	70
3.1. Effect of BA on callus fresh weight (FW) from	
different genotype explant	72
3.2. Effect of BA on organogenesis from different	
genotype explants	72
4. In vitro micropropagation of regenerated plantlets	74
REFERENCES	78
ENGLISH SUMAMRY	
ADARIC SUMMADY	

NROUGIN