

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

COMPUTER-AIDED BALANCING OF FLEXIBLE ROTORS

by Osama Ahmed Kandil

A Thesis Submitted to the
Faculty of Engineering, Cairo University
in Partial Fulfillment of the Requirements for the degree of
MASTER OF SCIENCE
in
MECHANICAL ENGINEERING

Under the Supervision of
Prof. Galal Ali Hassan
Professor of Systems Dynamics,
Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
June 2001

D/-as

, • · .

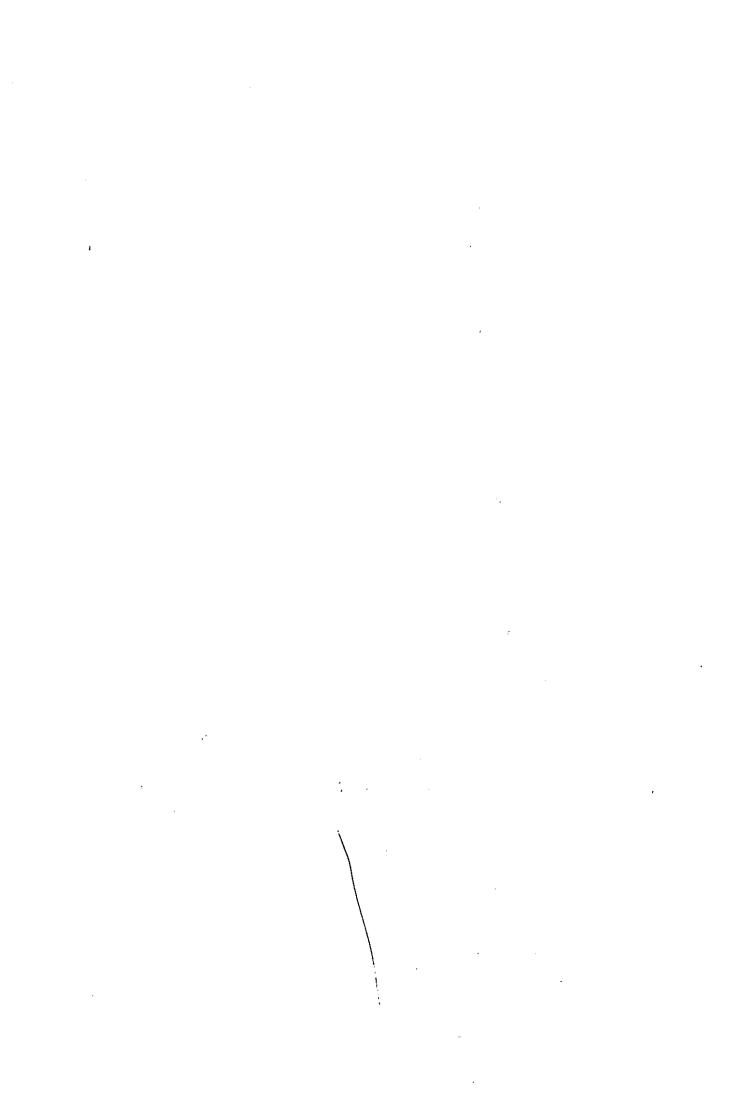
COMPUTER-AIDED BALANCING OF FLEXIBLE ROTORS

by Osama Ahmed Kandil

A Thesis Submitted to the Faculty of Engineering, Cairo University in Partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE

MECHANICAL ENGINEERING

Approved by the Examining Committee


Prof. Modamed Alaa Soliman El-Din Al-Hakim, Faculty of Engineering, Ain Shams University (Member)

Prof Ibrahim Fayzy Abd El-Wahed, Faculty of Engineering, Cairo University (Member)

Prof. Gald Ali Hassan, Faculty of Engineering, Cairo University (Thesis Advisor)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

June 2001

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my Professor Galal Ali Hassan for his supervision of this work and for his successful instructions, kind help and continuous advice throughout the work.

I would like to thank all my teachers from schools and university who taught me love of science and research.

	•	
		·
	. ·	
•		

CONTENTS

		Page
ACKNOWLI	EDGEMENTS	ii
TABLE OF C		Iii
LIST OF TA	BLES	vii
LIST OF FIG	GURES	viii
LIST OF SY	MBOLS AND ABBREVIATIONS	ix
ABSTRACT	•	xiii
SUMMARY		xiv
Chapter I	INTRODUCTION	1
1.1	Flexible Rotor	1
1.2	Balancing	1
1.3	Flexible Rotor Balancing Techniques	2
1.4	Computer-Aided Balancing of Flexible Rotors	3
1.5	The Objective of the Research	3
Chapter II	LITERATURE REVIEW	4
2.1	Modal Balancing	4
2.2	Influence Coefficient Balancing	6
2.3	Other Analytic Balancing Procedures	7
Chapter III	MODAL BALANCING TECHNIQUE	10
3.1		10
2.2	Model Palancing Algorithm	14

Chapter IV	EXACT POINT-SPEED BALANCING TECHNIQUE	18
4.1	Exact Point-Speed Influence Coefficient Balancing Theory	18
4.2	Exact Point-Speed Influence Balancing Algorithm	25
Chapter V	LEAST-SQUARES AND WEIGHTED LEAST-SQUARES	29
	BALANCING TECHNIQUE	
5.1	Least Squares Balancing Theory	29
5.2	Weighted Least Squares Balancing Theory	32
5.3	Least Squares Balancing Algorithm	33
5.4	Weighted Least Squares Balancing Algorithm	36
Chapter VI	LINEAR PROGRAMMING BALANCING TECHNIQUE	38
6.1	Linear Programming Balancing Theory	38
6.2	Linear Programming Balancing Algorithm	39
Chapter VII	COMPUTER-AIDED BALANCING OF FLEXIBLE ROTORS	45
7.1	Problem Solving with Computer	45
7.2	Program Design	45
7.3	Computer-Aided Balancing of Flexible Rotors	48
5.4	Weighted Least Squares Balancing Algorithm	
Chapter VII	II CASE STUDIES	58
8.1	Case Study I	58
8.2	Case Study II	60
8.3	Typical Computer Outputs	63
	8.3.1 Case Study I: Least Squares Technique	63
	8.3.2 Case Study I: Weighted Least Squares Technique	65
	8.3.3 Case Study II: Exact Point Speed Technique Using Complete Set	67

	8.3.4 Case Study II. Louist Squares x commique String 2.5.5.4	69
	and 2 8.3.5 Case Study II: Least Squares Technique Using Trials Number 3	71
	and 4	
	8.3.6 Case Study II: Weighted Least Squares Technique Using Trials	73
	Number 1 and 2	
	0.5.7 Case Study II. Weighted Boast Squares 100001400 1000015	75
	Number 3 and 4	
	8.5.6 Case Study II. Dillow 110g. mining 100 minque 0 ming	77
	Speed	70
	8.3.9 Case Study II: Linear Programming Technique Using Data of Second Speed	13
	•	81
	Vibration Using Results of 8.3.4 and 8.3.6	01
	•	83
	8.3.11 Case Study II: Exact Point Speed Technique Expecting Residual Vibration Using Results of 8.3.5	05
	8.3.12 Case Study II: Exact Point Speed Technique Expecting Residual	85
	Vibration Using Results of 8.3.8	٠,٠
	8.3.13 Case Study II: Exact Point Speed Technique Expecting Residual	87
	Vibration Using Results of 8.3.4 and 8.3.9	
	8.3.14 Case Study II: Modal Technique	89
Chapter IX	DISCUSSIONS AND CONCLUSION	90
9.1	Discussions	90
9.2	Conclusion	91
9.3	Recommendations for Future Work	91
REFERENC	CES	92

APPENDICES	99
A- Complex Linear Equations	99
ملخص الرسالة	98

•

.