Serum Transforming Growth Factor beta 2 in Breast-fed versus Hydrolyzed formula-fed preterm Neonates

Thesis

Submitted for Partial Fulfillment of Master Degree in Pediatric Medicine

Presented by

Abdel-Rahem Ahmed Abdel-Rahem Hamed

(M.B.B.Ch, 2008) Fuculty of Medicine, Ain Shams University

Under the supervision of

Prof. Ibrahim Saad Abou Saif

Professor of Pediatrics Fuculty of Medicine - Ain Shams University

Ass.Prof.Rania Ibrahim Hossni Ismail

Assistant Professor of Pediatrics Faculty of Medicine- Ain Shams University Ass. Prof. Wafaa Khalil Zaky

Assistant Professor of Microbiology Faculty of Medicine – Ain Shams University

Fuculty of Medicine Ain Shams University 2016

First and foremost, I feel always indebted to **AUAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Ibrahim Saad Abou**Saif, Professor of Pediatrics, Fuculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am deeply thankful to Ass. Prof. Rania Ibrahim Ibossni Ismail, Assisstant Professor of Pediatrics, Fuculty of Medicine- Ain Shams University, for her great help, active participation and guidance.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Wafaa Khalil Zaky, Assisstant Professor of Microbiology, Fuculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Abdel-Rahem Ahmed Abdel-Rahem Hamed

List of Contents

Title	Page No.
List of Abbreviations	4
List of Tables	ii4
List of Figures	8
Introduction	1
Aim of the Work	4
Review of Literature	
Prematurity	5
■ Necrotizing Enterocolitis (NEC)	8
■ Transforming Growth Factor β	33
Subjects and Methods	45
Results	55
Discussion	71
Summary	83
Conclusion	86
Recommendations	87
References	88
Arabic Summary	

List of Abbreviations

Abb.	Full term
AAP	American academy of pediatrics
BF	Breast-Fed
CBC	Complete blood count
CPAP	Continuous positive airway pressure
CRP	C-Reactive protein
CS	Cesarean section
CSF	Cerebro spinal fluid
DHM	Donor human milk
DM	Diabetes Mellitus
ELBW	Extremely low birth weight
FI	Feeding intolerance
GA	Gestational age
GIT	Gastrointestinal tract
HGS	Hepatocyte growth factor substrate
HPF	Hydrolyzed protein formula
Ig	Immunogloblin
IUGR	Intrauterine growth retardation
LBW	Low birth weight
MV	Mechanical ventilation
NEC	Necrotizing enterococitis
NICU	Neonatal intensive care unit
NS	Neonatal sepsis
NVD	Norma vaginal deliver
PDA	Patent ductus arteriosus

List of Abbreviations (Cont...)

Abb.	Full term
	Respiratory distress syndrome Spontaneous intestinal perforation
TGF-β	Transforming growth factor-β
TPN	Total parental nutrition
VLBW	Very low birth weight

List of Tables

Table No.	Title Page N	10.
Table (1):	Neonatal problems associated with premature infants	7
Table (2):	Signs and Symptoms Associated with NEC	22
Table (3):	Ways to prevent NEC and their level of evidence	26
Table (4):	Supportive Care for the Infant with NEC	30
Table (5):	Treatment of necrotizingenterocolitis	31
Table (6):	Effects of various cytokines on intestinal mucosal development	40
Table (7):	NEC stages (Bell's staging)	49
Table (8):	Comparison between BF and HPF regarding neonatal data	55
Table (9):	Initial diagnosis	58
Table (10):	Comparison between septic and non septic neonates at admission and its correlation to $TGE\beta2$ in BF group	58
Table (11):	Comparison between septic and non septic neonates at admission and its correlation to $TGE\beta2$ in HPF group	58
Table (12):	Comparison between BF and HPF regarding laboratory data	59
Table (13):	Comparison between BF and HPF regarding level of TGF-β2 when the baby reached 75ml/kg/day	60
Table (14):	Comparison between BF and HPF	61
Table (15):	Correlation between TGF-β2 and the studied parameters in all patients	62

List of Tables (Cont...)

Table No.	Title	Page No.
Table (16):	Relation of TGF-β2 with neonate maternal illness and type of delivery	·
Table (17):	Relation of Respiratory support, intolerance and NEC with TGF- $\beta 2$	_
Table (18):	Relation between N. sepsis and TGF-β2	267
Table (19):	Relation between mortality and TGF-32	268
Table (20):	ROC curve for TGF- $\beta 2$ in predic mortality.	
Table (21):	ROC curve for TGF-β2 in prediction of intolerance and NEC	U

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The multifactorial nature of the etiolo	
Figure (2):	Pathogenesis of NEC	12
Figure (3):	Immaturity of the intestinal epithel barrier and neonatal mucosal immusystem predispose the premie bacterial invasion which trigg sequence of NEC.	lial ine to ers
Figure (4):	Differences in NEC risk betwee preterm and term intestine at a cellular level of the mucosa	een the
Figure (5):	Comparing the incidence of NEC & S in relation to gestational age	
Figure (6):	Pathological causes & types of NEC	17
Figure (7):	Different factors favoring NEC	19
Figure (8):	Differential X-Ray finding in NEC	24
Figure (9):	The Structure of (TGF-β) Isoforms	34
Figure (10):	The TGF-β signaling pathway	35
Figure (11):	Mechanism of action of TGF-β	36
Figure (12):	Role of TGF- β in intestine	39
Figure (13):	Effect of Probiotic on TGF-β	44
Figure (14):	Sex in study groups.	56
Figure (15):	Birth weight in study groups	56
Figure (16):	Gestational age in study groups	57
Figure (17):	Mother age in study groups	57
Figure (18):	TGF-β2 in study groups	60
Figure (19):	Mortality in study group	62
Figure (20):	Correlation between TGF-β2 and bit weight	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (21):	Correlation between TGF-β2 gestational age	
Figure (22):	Correlation between TGF-β2 hemoglobin level	
Figure (23):	Feeding intolerance and TGF-β2	66
Figure (24):	Relation between N. sepsis and TGF	-β267
Figure (25):	Relation between mortality and T β2.	
Figure (26):	ROC curve for TGF-β2 in prediction mortality at cut off point < 3000 v sensitivity of 75.0% and specificity 60.94%	with y of
Figure (27):	ROC curve for TGF-β2 in prediction feeding intolerance	n of

Abstract

TGF- $\beta2$ was not significantly related to gender, maternal illness or mode of delivery between the 2 groups. There was a highly significant correlation between the TGF- $\beta2$ serum level and birth weight, gestational age and HB% level. On the other hand, there was a highly significant negative correlation between TGF- $\beta2$ serum level and N.sepsis, mortality.

Finally, the study support our hypothesis that BF preterm neonates exhibit higher level of serum TGF- $\beta2$ and lower incidence of FI compared to HPF preterm neonates.

Key words: Necrotizing enterocolitis - Very-low-birth-weight- Intra-Uterine growth retardation- Low birth weight infants

Introduction

It is well established that breast-feeding confers protection against infectious diseases, particularly those of the gastrointestinal tract, via antimicrobial molecules such as immunoglobulins, lysozyme, lactoferrin, defensins, and oligosaccharides (Newberg and Walker, 2007).

Accumulating evidence suggests that in addition to this passive immunoprotection, bioactive molecules in breast milk modulate the infant's mucosal and systemic immune responses and may thereby promote adequate and appropriate immune responsiveness against both potentially pathogenic and indigenous microbes and harmless environmental and dietary antigens (*Rautava and Walker*, 2009).

One of the most striking differences between breast-fed infants was evident formula-fed in the concentrations of the Transforming Growth Factor beta 2 (TGF- β 2) isoform, TGF- β 2, with breast-fed infants exhibiting significantly higher levels of this anti inflammatory cytokine. Breast milk provides infants with direct anti-pathogenic effects maternal microbe-specific and via Ιg various other antimicrobial substances (Newberg and walker, 2007).

TGF- β 2 is an important growth factor present in human and bovine milk (*Gauthier et al.*, 2006; *Chatterton et al.*, 2013). TGF- β is an immunomodulatory cytokine that is

secreted in breast milk in significant quantities. Of the 3 human TGF- β isoforms (TGF- β 1, 2, and 3), TGF- β 2 is most abundant in breast milk. Breast milk TGF-β2 may be an important source of TGF-β during the neonatal period when endogenous production of TGF-β in the gut is still inadequate (Maheshwari et al., 2011; Zhang et al., 1999).

In the intestine, TGF-β2 is decreased in premature infants and especially in those experiencing necrotizing enterocolitis (NEC) as compared with term infants (Maheshwari et al., 2011). TGF-\(\beta\)2 may promote intestinal immune responses and gut functions, such as the intestinal adaptation to bacterial colonization and establishing oral tolerance by regulatory T cells, inducing IgA production and enhancing the intestinal epithelial barrier function, in newborn infants (Gauthier et al., 2006; Chatterton et al., 2013).

The deficiency of TGF-β2 may partly account for intestinal disorders, for instance the high incidence of NEC in formula-fed preterm infants (Boyd et al., 2007).

In neonates, extensively hydrolyzed protein formula has been shown to reduce gastro- esophageal reflux (Corvaglia et al., 2013), to treat allergy and food intolerance (Osborn and Sinn, 2006) and to accelerate gastrointestinal transit of milk and stools (Mihatsch et al., 2001).

In NICU, hydrolyzed protein formula has been used to feed the preterm infants when breast milk is not available (Obsorn and sinn, 2006). Whether it enables a more rapid establishment of full enteral feeding in preterm infants needs to be investigated (Mihatsch et al., 2001).

We hypothesis that breast fed preterm neonates exhibit higher level of serum TGF-β2 and lower incidence of feeding intolerance compared to hydrolyzed formula fed preterm neonates.

AIM OF THE WORK

To study the feeding tolerance and its relation to serum TGF- $\beta 2$ in breast fed versus hydrolyzed formula fed in preterm neonates.

Prematurity	y

Review of Literature —

Chapter 1

PREMATURITY

Definition

remature infants are live born infants delivered before completed 37 weeks from the first day of the last menstrual period (Stoll and Kliegman, 2004). Low birth weight infants (LBW) are infants weighing 2500 gm or less at birth, may be caused by a short gestation (prematurity), intra-uterine growth retardation (IUGR) or both (Beherman et al., 2000). Very-low-birth-weight (VLBW) infants are those who weigh less than 1500 gm at birth, while extremely low birth weight (ELBW) are infants who weigh less than 1000gm at birth (Cockburn, 2000).

Incidence

In developing countries, approximately 70% of LBW infants have IUGR, while in developed countries 30 % of LBW infants have IUGR. Infants with IUGR have greater morbidity and mortality than appropriate for gestational age (*Beherman et al.*, 2000).

In Egypt, only 42% of mothers were able to provide birth weight information about their babies. Amongst those births, 11% were classified as LBW, the percentage of children with LBW was higher in urban areas than in rural ones (12% in urban areas).