

ROLE OF ULTRASOUND IN EVALUATION OF CHEST DISEASES

ESSAY

Submitted for Fulfillment of Master Degree in Radiodiagnosis

Ву

Nixon Barnaba Balli Yakram

MB BS

College of Medicine – University of Juba Supervised by

Dr. Youssriah Yahia Sabri

Professor of Radiodiagnosis

Faculty of Medicine – Cairo University

Dr. Mona Foad Ahmed

Lecturer of Radiodiagnosis

Faculty of Medicine – Cairo University

Dr. HibatAllah Hany Mohamed Asal

Lecturer of Pulmonolgy

Faculty of Medicine – Cairo University

Faculty of Medicine – Cairo University

2015

Abstract

Keywords

ICU, B-mode, EBUS-TBNA, ARDS, PAVM

The static analysis of a combination of sonographic artifacts and real images makes accurate diagnosis of many lung disorders possible. And Ultrasonography allows immediate diagnosis of pleural effusion, pneumothorax, pulmonary embolism, pneumonia, as well as rib fracture, helps in staging of lung cancer, and it provides a basis for further diagnostic-and treatment-related decisions. Appropriate training on chest ultrasonography is needed to ensure proper application and interpretation of this technique .While application of ultrasound for the detection of pleural and peripheral lung lesions is well established, the sonographic assessment of the lung parenchyma is relatively new. Nevertheless, there are some limitations to the use of chest ultrasonography including subcutaneous emphysema deeper lung disorders, obesity, and operator dependency.

.

Acknowledgement

I am grateful to God for His grace, guidance, and provision that enabled me to conclude this work.

I wish to express my sincere thanks and gratitude to Dr. Youssriah Yahia Sabri, professor of Radiodiagnosis, faculty of Medicine – Cairo University, and my principal supervisor, for providing me with all the necessary tools throughout the processes of this research. I am extremely thankful and indebted to her for the expertise and encouragement extended to me.

I would like to extend my sincere regards to Dr. Mona Foad Ahmed, lecturer of radiodiagnosis – Cairo University, for her support in this work.

I am also grateful to Dr. HibatAllah Hany Mohamed Asal, lecturer of Pulmonology – Cairo University for the assistance extended to me.

I take this opportunity to express gratitude to all staff in the Department of Radiodiagnosis, faculty of Medicine – Cairo University for their help and support.

Lastly, but not the least, I would like to thank my family for paying back my shortcomings with love and smiles.

This research is dedicated to my wife, daughters, and parents whose unconditional affection, love, and encouragement have enabled me face this challenge with zeal and passion

TABLE OF CONTENTS

Introduction & Aim of the Work	1
Literature Review	
Normal Sonographic Anatomy	4
General Sonographic Technique1	5
• Role of Ultrasound in Evaluation of Chest Disease1	9
O Pleural Diseases2	0
O Lung Diseases5	3
O Chest Wall Lesions	71
O Diaphragm7	77
o EBUS – TBNA8	30
O Limitations of US8	3
Summary and Conclusion	84
References8	35
Arabic Summery) 7

LIST OF ABBREVIATIONS

ARDS Acute respiratory distress syndrome

B-mode Brightness mode

BSLUS Bed side lung ultrasonography

CDUS Color Doppler Ultrasound CT Computed tomography

DTF Diaphragm thickness fraction

EBUS-TBNA Endobronchial ultrasound guided transbronchial

needle aspiration

EUS-FNA Endoscopic ultrasound fine needle aspiration

FNA Fine needle aspiration ICU Intensive care unit Lus Lung ultrasound

MHz Mega Hertz M-mode Motion Mode

PAVM Pulmonary arteriovenous malformation

PE Pleural effusion

PE pulmonary embolism

PTX pneumothorax
RV Residual volume
TLC Total lung capacity

US Ultrasound

LIST OF FIGURES

No	TITLE	PAGE
1	The typical appearance of a normal chest on	4
2	Bat sign	5
3	Typical lung ultrasound image showing normal ribs	5
4	A-lines in normal chest US	7
5	Comet-tail artefact	8
6	V-Lines: Normal US of the thoracic cavity	9
7	Lung curtain	10
8	Seashore sign B & M-mode	11
9	Seashore sign	11
10	Normal thymus	14
11	Examination techniques & positions	16
12	The four Volpicelli's zones	17
13	Longitudinal and oblique scanning of the chest.	18
14	Sonographic appearance of pleural effusion (PE).	24
15	X-ray (A) and ultrasound (B) of pleural effusion and lung	24
	collapse	
16	Chest color Doppler ultrasonography with linear probe	25
17	Sinosoid sign	26
18	Placement of US probe for V-line visualization	26
19	Lung ultrasound demonstrating V line	27
20	M-mode scan of a mass shows the anechoic area of the	28
	pleural effusion versus echogenicity within a mass	
21	Pleural nodule	29
22	Posterior & lateral thoracentesis approaches with typical	31
	puncture site	
23	Supine and lateral recumbent positions for thoracentesis:	31
24	Ideal site for needle trajectory above the rib	32
25	Triangle of safety for insertion of chest drain	35
26	Common positions for chest drain insertion	36
27	Pleuritis in a patient with viral infection	36
28	Pleural thickening US	37
29	Pleural tumor	38
30	Pleural thickening in mesothelioma	39
31	Probe positions for a PTX scan	42
32	US of a PTX showing the lung point	45

33	Lung pulse from right mainstem intubation	46
34	M-mode US showing Stratosphere or Bar Code sign	47
35	Pneumothorax US algorithm	48
36	Seashore sign	50
37	M-mode of normal lung US showing the seashore sign	50
	versus M-mode of PTX	
38	Lung consolidation showing hepatization	54
39	Pneumonia seen on US	55
40	Pneumonia airbronchogram	56
41	The US appearance of pneumonia	57
42	Compression atelectasis	60
43	Colour Doppler ultrasound scan of PAVM	61
44	Old pulmonary infarction	67
45	Pulmonary embolism US	68
46	Subpleural lung mass	69
47	Thoracic wall lipoma US	73
48	Thoracic wall hematoma US	73
49	Rib fracture with a step of 1.5 mm	74
50	US of rib fracture with reverberation echoes	75
51	Fracture of the sternum	76
52	EBUS-TBNA of lung cancer	82

LIST OF TABLE

No	TITLE	PAGE
1	Normal findings in chest sonography	6
2	Line patterns seen in lung ultrasound and their corresponding	12
	clinical significance	
3	Ultrasound quantification of pleural effusion	22
4	Cardinal Signs for Ultrasonographic Diagnosis of Pleural	23
	Effusions	
5	Nature of Pleural effusion	28
6	Ultrasound patterns and the nature of pleural effusion	29
7	Summary of Steps in Ultrasound Guided Thoracentesis	33
8	Causes and appearance of pleural fluid	34
9	Sonographic findings in pleuritis	37
10	Sonographic appearances of some pleural lesions versus	40
	peripheral lung lesions	
11	Evaluation for pneumothorax	47
12	Terms and Definitions Associated With Ultrasonographic	49
	Detection of Pneumothorax	
13	Common ultrasound findings in pneumonia	56
14	Differential diagnostic criteria of chest US for distinguishing	58
	pneumonic consolidation, peripheral bronchogenic carcinoma	
	and compressive atelectasis	
15	Sonomorphology of lung tuberculosis	59
16	Sonographic signs of ARDS	63
17	Early versus late pulmonary infarction	66
18	Sonopathology of the chest wall	71
19	Sonography criteria for fractures of the ribs and the sternum	74

Introduction and Aim of the Work

Traditionally, air has been considered the enemy of ultrasound and the lung has been considered an organ not amenable to ultrasonography examination. Chest X-Ray and CT scan have been the routine chest tests. However, there are some difficulties as in ICU where various positions are not feasible. Computed tomography chest exposure gives the patient an effective dose of eight msv, equivalent to four hundred chests x-rays. Thus, repeated follow -up examinations are not advisable (**Prithviraj and Suresh**, (2014).

Ultrasound (US) has been proved to be valuable for the evaluation of a wide variety of chest diseases, particularly when the pleural cavity is involved. The advantages of US are that it is a relatively inexpensive, widely available, mobile form of multi-planar imaging free from ionizing radiation. Chest US can supplement other imaging modalities of the chest and guides a variety of diagnostic and therapeutic procedures (Liao et al, 2013).

Ultrasonography of lung is based on the principle that every acute disease reduces lung aeration, changing the lung surface and generating distinct, predictable patterns. This allows the diagnosis of various conditions and the monitoring of therapeutic interventions (Karim and Arora, 2014).

With a sensitivity of 100% and a specificity of 99.7%, sonography is more accurate than conventional radiography in the detection of pleural effusion because as little as 5 ml of fluid can be visualized. By contrast, the minimum volume detectable in a posteroanterior radiograph is 150 ml (Vollmer and Gayete, 2010).

Ultrasonography allows characterization of the size of a pleural effusion. The size of a phleural effusion may be estimated qualitatively as small, moderate, or large. Ultrasound is superior to standard radiography and chest CT scan to characterize the internal complexity of an effusion, such as septation (**Koenig et al, 2011**)

US-guided transthoracic biopsy allows needle placement and biopsy taking during a single breath hold, which decreases the time the needle stays across the pleura. Real-time US visualization allows accurate needle placement, shorter procedure time, and better performance in debilitated and less cooperative patients (Bahr et al, 2013).

High-frequency ultrasound can detect soft-tissue masses arising from the chest wall as well as bony metastases to the ribs. It also differentiates pulmonary consolidation from interstitial syndrome (**Groote-Bidlingmaier and Stellenbosch**, **2012**).

The principal limitation of chest ultrasound is the presence of subcutaneous emphysema that impedes the petenetration in depth of the ultrasound beam; other factors such as obesity, presence of chest wall hematomas or well developed musculature can create varying degrees of obstacle but they never impede the study of the lung (**Zanforlin et al, 2013**).

Ultrasound machines with two-dimensional scanning capability are used for pleural ultrasonography and associated procedures. A 3.5 to 5.0 MHz transducer with a convex sector design is used in most instances. Once an abnormality has been identified, a 7.5 to 10 MHz linear transducer can be used if needed to obtain more detailed images (Sikora et al, 2012).

A particular remarkable usefulness of thoracic ultrasound is in the emergency department, in cases of acute respiratory illness (**Sperandeo et al, 2014**).

Aim of the work

The aim of this work is to evaluate the role of ultrasound as a bed-side, safe, available, and affordable technique in management of some chest diseases.

NORMAL SONOGRAPHIC ANATOMY OF THE CHEST

In the typical appearance of a normal chest on US, the chest wall is visualized as multiple layers of echogenicity representing muscles and fascia. Reverberation artefacts beneath the pleural lines imply an underlying air-filled lung (Fig.1) (Bolliger et al, 2009).

Fig.1 The typical appearance of a normal chest on US by transverse image through the intercostal space with high frequency probe.: S_Skin; CW_chest wall; P_pleura; Pp_parietal pleura; Pv_visceral pleura; L_lung; R_reverberation artifact (Bolliger et al, 2009).

The pleura situated posterior (below) to the ribs appear as white curved lines with a dark shadow behind. This is known as the "Bat sign" (Fig.2). In a longitudinal view the bat sign identifies the upper and lower ribs (the wings of the bat) and, a little deeper, the pleural line (the back of the bat) (**Prithviraj and Suresh**, 2014).

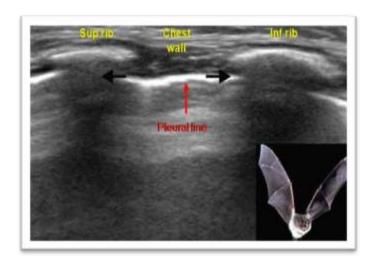


Fig. 2: Bat sign. (Prithviraj and Suresh, 2014).

The normal ribs appear as hyperechoic surfaces with prominent acoustic shadows beneath the ribs. Approximal 0.5 cm below the ribs shadows, the visceral and parietal pleura appear as an enchogenic bright line named pleural lines (Fig.3). During respiratory movement, the two pleural lines glide with each other and is referred to as the "Gliding sign". Loss of this sign can be seen in pneumothorax or diffuse pleural thickening (**Liao et al, 2013**).

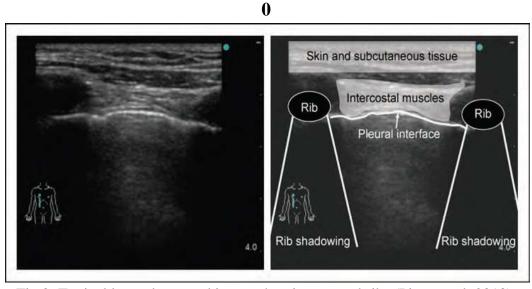


Fig.3: Typical lung ultrasound image showing normal ribs (Piette et al, 2013).