FUNCTIONAL GENOMICS STUDIES FOR DETERMINING LOCI ASSOCIATED WITH SALT TOLERANCE IN RICE (*Oryza sativa* L.)

BY AHMED MAHMOUD ABDELHAMID SHOKRY

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 1993 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 2000

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Genetics)

Department of Genetics
Faculty of Agriculture, Ain Shams University

Approval sheet

FUNCTIONAL GENOMICS STUDIES FOR DETERMINING LOCI ASSOCIATED WITH SALT TOLERANCE IN RICE (*Oryza sativa* L.)

BY AHMED MAHMOUD ABDELHAMID SHOKRY

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 1993 M.Sc. Agric. Sc. (Genetics), Ain Shams University, 1998

inis thesis for Ph.D. degree has been appr	ovea by:
Prof. Dr. Effat A. Badr Prof. Emeritus of Genetics, Faculty of Agriculture, Alexandria University	
Prof. Dr. Eman M. Fahmy Professor of Genetics, Faculty of Agriculture, Ain Shams University	
Prof. Dr. A. Bahieldin Mohamed Professor of Genetics, Faculty of Agriculture, Ain Shams University	
Prof. Dr. F. M. Abdel-Tawab Prof. Emeritus of Genetics, Faculty of Agriculture, Ain Shams University	
Date of Examination / / 2005	

FUNCTIONAL GENOMICS STUDIES FOR DETERMINING LOCI ASSOCIATED WITH SALT TOLERANCE IN RICE (Oryza sativa L.)

BY

AHMED MAHMOUD ABDELHAMID SHOKRY

B.Sc. Agric. Sc. (Genetics), Ain Shams University, 1993M.Sc. Agric. Sc. (Genetics), Ain Shams University, 1998

Under the supervision of:

Prof. Dr. F. M. Abdel-Tawab
Prof. Emeritus of Genetics, Department of Genetics,
Faculty of Agriculture, Ain Shams University
(Principal supervisor)

Prof. Dr. A. Bahieldin Mohamed
Professor of Genetics, Department of Genetics,
Faculty of Agriculture, Ain Shams University

Dr. G. A. Gad El-Karim

Head of Research, Agricultural Genetic Engineering

Research Institute (AGERI), Agricultural Research Center (ARC)

ABSTRACT

AHMED MAHMOUD ABDELHAMID SHOKRY. Functional Genomics Studies for Determining Loci Associated with Salt Tolerance in Rice (*Oryza sativa* L.). Unpublished Doctor of Philosophy Dissertation, Department of Genetics, Faculty of Agriculture, Ain Shams University, 2005.

Soil salinity is considered as one of the major and widespread abiotic stresses limiting rice production. Rice is one of three cereals produced annually at worldwide levels of approximately half a billion tons. It is also becoming evident that rice could play a major role as a model for cereal genomics due to the small size of the rice genome between 420 to 450 megabase pairs (Mbp) in which rice will has on average one gene approximately every 15 kilobase pairs (Kbp).

Five rice (*Oryza sativa* L.) cultivars were screened for salt tolerance in this study, i.e., Giza 159, Giza 177, Giza 178, Sakha 102 and Agami M1. Agami M1 was chosen as the most tolerant cultivar for salt stress.

Differential display was conducted for shoot tissues under control and salt concentration treatments at 10,000 ppm for one and ten hours. Out of 324 bands observed, 30 bands (9.26%) showed differential expression between treatments. They were classified into six patterns of expression.

The automated DNA sequencing reactions were conducted for some fragments. Computer analysis was done using Blast programs from National Center for Biotechnology Information (NCBI), USA to determine homologies and chromosome location for these fragments on the rice genome. Some cDNA fragments showed homology to some genes that play a role in salt tolerance mechanisms like ubiquitin and Ca²⁺-transporting ATPase which

can be used for the isolation of salt related genes (full length) while, the other fragments can be used to discover new genes related to salt-stress response mechanisms.

Key words: Rice, Salt stress, mRNA, cDNA, Differential Display, Gene expression.

ACKNOWLEDGEMENTS

First and foremost, I'm indebted to ALLAH forever.

I would like to express my gratitude and deep thanks to **Prof. Dr. F. M. Abdel-Tawab,** Professor of Molecular Genetics, Genetics Dept., Fac. Agric., Ain Shams Univ. for his kind supervision, suggesting the problem, fruitful help, patriotic patience, energetic guidance, conclusive instructions, writing and reviewing the manuscript throughout the course of this study.

I feel deeply thankful to **Prof. Dr. A. Bahieldin,** Professor of Molecular Genetics, Genetics Dept., Fac. Agric., Ain Shams Univ. for his kind supervision, suggesting the problem, unlimited support, his encouragement from the very beginning up to writing and reviewing the manuscript.

Thanks are extended to **Prof. Dr. G. A. Gad El-Karim,** Deputy Director & Head of Research. Agric. Genet. Eng. Res. Inst. (AGERI), Agric. Res. Cent. (ARC), Giza, Egypt for his kind supervision, suggesting the problem, and unlimited support on both scientific and personal levels during the course of this study.

Special thanks are due to **Dr. Dina A. El-Khishin**, head of GPBI lab, AGERI, for providing the laboratory facilities for this study.

Special thanks are due to **Prof. Dr. Ismail Abd El-Monem**, Chief Researcher, Crop breeding institute, ARC and Project Coordinator in International Center for Agriculture in Dry Area (ICARDA), for providing green house facility for the screening part of this study.

Thanks are also due to all the **staff members** of the ESL lab and GPBI Lab, Genetic Engineering Research Institute (AGERI), Agric. Res. Center (ARC), for their great help with special gratitude to Miss Abla El-Awady for helping in sequencing part of the study.

Thanks are also extended to all the **staff members** of the Department of Genetics Fac. Agric., Ain Shams Univ. for their continued sport of this study, special gratitude to Dr. Sabah M. Hassan (my wife) for reviewing the manuscript and Mr. Sherif Idris

for helping in setting up the deferential display system in this study.

Special thanks are also extended to **my family** for their patience and encouragement during this work.

Last, but not least, I would like to dedicate this work to the soul of my father.

CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LETRATURE	4
1. Impacts of salt stress on rice	4
1.1. Genetics of salinity tolerance in rice	4
1.2 Mechanisms of salt tolerance in rice	5
2. Differential Display	7
3. Rice, the model for cereal genomics	15
4. Selected salt stress- related genes isolated through differential	
display	16
4.1 Ubiquitin	16
4.2. Ca ²⁺ transport genes	17
4.2.1. Ca ²⁺ channel genes	17
4.2.2. Vacuolar H ⁺ /Ca ²⁺ antiport	18
4.2.3. Pmc1p: a vacuolar Ca ²⁺ pump	19
4.2.4. Pmr1p: a secretory Ca ²⁺ pump	19
4.2.5. Ca ²⁺ transport in the endoplasmic reticulum	20
4.2.6. Ca ²⁺ signaling	20
4.2.7. Cytosolic calcium activity under salt stress	21
III. MATERIALS AND METHODS	23
1. Plant Material	23
2. Methods	23
2.1. Screening experiment: to detect salt-tolerant cultivars	23
2.2. RNA extraction from plant material	25
2.3. Reverse transcription of mRNA	25
2.4. PCR amplification of cDNA using GenHunter RNAimage kit	25
2.5. Differential display of amplified cDNA on sequencing gel	26
2.6. Extraction of cDNA from the gel	27
2.7. Reamplifying cDNA by PCR	28

2.8. Preparation of competent cells for the introduction of	00
plasmid DNA	28 29
2.9. DNA ligations	_
2.10. Transformation of competent cells with plasmid DNA	30
2.11. Miniprep of plasmid DNA	31
2.12. Sequenceing for the cDNA inseret	32
2.13. Identification of the protein product(s) homologous to the	
cDNA using the NCBI database	33
IV. RESULTS AND DISCUTIONS	34
Detection of salt-tolerant rice genotypes	34
DD-PCR of rice shoots and roots under salt stress	37
3. Differential Display-PCR	39
4. Expression patterns of detected DD cDNAs	42
5. Re-amplifiction of cDNA Fragments	55
6. Cloning of the cDNA Fragments	57
7. Bacterial transformation	58
8. Screening of transformed bacterial cells	58
8.1. Blue/White colony screen	58
8.2. PCR screening	59
8.3. Restriction endonuclease digestion	60
9. DNA sequencing	61
10. Data analysis for sequenced fragments	64
10.1. Fragment 1	64
10.2. Fragment 12	67
10.3. Fragment 13	69
10.4. Fragment 20	73
10.5. Fragment 22	80
V. SUMMARY	83
VI. REFERENCES	86
ARABIC SUMMARY	

LIST OF TABLES

		Page
Table (1):	Names and origins of studied rice cultivars	23
Table (2):	Significance of the five yield-related traits for	
	the five rice cultivars under salt stress	
	(10,000 ppm NaCl) as compared to their	
	respective controls	35
Table (3):	Expression patterns of the resulted DD shoot	
	fragments	50
Table (4):	Molecular sizes and optical densities of	
	shoot DD cDNA fragments under control, 1-	
	h and 10-h treatments	51
Table (5):	DD-fragments and homology search results	62

LIST OF FIGURES

		Page
Figure (1):	pGEM-T Easy Vector circular map and	
	sequence reference points	30
Figure (2):	Mean comparisons among the five rice	
	cultivars for the five yield-related traits under	
	salt stress (10,000 ppm NaCl) as compared	
	to there respective controls	36
Figure (3):	Agarose gel electrophoresis of total RNAs	
	isolated from shoots and roots of Agami M1	
	cultivar after different periods of salt	
	exposure (0, 1 h and 10 h)	38
Figure (4):	Agarose gel electrophoresis for PCR	
	products (about 700 bp) of α -amylase gene	
	family using cDNAs generated by different	
	anchor primers (A, C and G) of shoots (a)	
	and roots (b) of Agami M1 cultivar under	
	either environmental condition at different	
	time intervals	39
Figure (5):	DD-polyacrylamide gels of shoot cDNAs	
	under control and stress (1 and 10 h)	
	conditions utilizing different primer	
	combinations, a)T11A, b) T11C and c) T11G.	
	Lanes 1 and 2 (control), lanes 3 and 4 (1-h	
	shoot treatment, 10,000 ppm), lanes 5 and 6	
	(10-h shoot treatment, 10,000 ppm). Arrows	
	indicate a number of differentially expressed	
	bands on a duplicate basis	41
Figure (6):	DD fragments and their vertical expression	
	profiles as illustrated by optical density	
	histograms. Lanes 1 and 2 (control), lanes 3	

	and 4 (1-h shoot treatment, 10,000 ppm),	
	lanes 5 and 6 (10-h shoot treatment, 10,000	
	ppm). Arrows indicate the positions of DD	
	bands	43
Figure (7):	DD expression patterns (groups 1-6) based	
3 ()	on horizontal peak optical density diagrams	
	of DD fragments under control, treatment	
	(10,000 ppm) for 1-h and 10-h	52
Figure (8):	Hierarchical cluster analysis dendrogram	
	showing relations between the 30 fragments	
	according to their O.D	56
Figure (9):	Hierarchical cluster analysis dendrogram	
	showing relations between the 30 cDNA	
	fragments based on their expression	
	profiles	57
Figure (10):	LB-Agar plates containing single white	
	colonies for transformed <i>E. coli</i> cells	59
Figure (11):	PCR screening of different white colonies	
	(1, 2, 11, 12, 13, 20, 21, 22, and 26) and	
	different blue colonies (N).	60
Figure (12):	Plasmids digestions with EcoRI restriction	
	enzyme	61
Figure (13):	•	
	fragments	63
Figure (14):		
	hits with similar DNA sequences	65
Figure (15):	Sequence alignment of fragment 1 and	
	identities with <i>Oryza sativa</i> (japonica	
- (15)	cultivar-group) genomic DNA	66
Figure (16):	Homology results of fragment 12 showing	
	top hits with similar DNA sequences	67

Figure (17):	Sequence alignment of fragment 12 and identities with <i>Oryza sativa</i> (japonica	
	cultivar-group) genomic DNA	68
Figure (18):	Homology results of fragment 13 showing	
	top hits with similar DNA sequences	70
Figure (19):	Sequence alignment of fragment 13 and	
	identities with Oryza sativa (japonica	
	cultivar-group) genomic DNA	71
Figure (20):	Figure (20): Homology results of fragment 13	
	showing top hits with similar protein	
	sequences	72
Figure (21):	Sequence alignment of fragment 13 and	
	identities with similar protein sequences	72
Figure (22):	Homology results of fragment 20 showing top	
	hits with similar DNA sequences	73
Figure (23):	Sequence alignment of fragment 20 and	
	identities with Oryza sativa (japonica cultivar-	
	group) genomic DNA	74
Figure (24):	Homology results of fragment 20 showing top	
	hits with similar protein sequences	76
Figure (25):	Sequence alignment of fragment 20 and	
	identities with similar protein sequences	77
Figure (26):	Homology results of fragment 22 showing top	
	hits with similar DNA sequences	80
Figure (27):	Sequence alignment of fragment 22 and	
	identities with Oryza sativa (japonica cultivar-	
	group) genomic DNA	81

I. INTRODUCTION

Rice is one of three cereals produced annually at worldwide level of approximately half a billion tons (FAOSTAT, 2004). Unlike the other major cereals, more than 90% of rice is consumed by humans. Approximately, half of the world's population derives a significant proportion of their caloric intake from rice consumption. Given the predicted rise in the world's human population, it is likely that rice consumption, and therefore demand, will increase over the next several decades. As a limited acreage of intensively cultivated areas is available to increase rice cultivation, both higher yields and expansion of cultivation into salt-affected areas are prerequisites to meet the anticipated rising demand.

In addition to being an important cereal crop for human consumption, it is also becoming clear that rice could play a major role as a good model for cereal genomics. Rice has a genome size considerably smaller than the other major cereals, which is estimated at 420 to 450 megabase pairs (Mbp). Sorghum, maize, barley, and wheat have significantly larger genomes (1000, 3000, 5000, and 17000 Mbp, respectively). The small genome size of rice results in a higher gene density relative to the other cereals. Assuming a total of 30,000 genes in each of the cereal genomes, rice will have on average of one gene approximately every 15 kilobase pairs (Kbp). Maize and wheat will have one gene approximately every 100 and 500 Kbp, respectively. This higher gene density in rice makes it an attractive target for cereal gene discovery efforts and genome sequence analysis (Goff, 1999).

Although genes in rice are present at a higher relative density than in other cereals, they are predicted to be arranged in a similar general order within the genome. Comparisons of the physical and genetic maps of cereal genomes have led to concede that a significant amount of colinearity of gene order exists among the different cereal genomes (Ahn et al., 1993). Accordingly, the use of rice as a model for cereal comparative genomic analysis has been proposed and recently reviewed (Havukkala, 1996).

Plants are frequently exposed to stresses, which are usually defined as external factors exerting disadvantageous influences on them (Levitt, 1972). Water deficit, chilling and freezing, heat stress, salinity and oxygen deficiency are major stress factors restricting plant growth (Boyer, 1982; Salisbury and Ross, 1989). Some of which (such as temperature) can become stressful in a few minutes; others may take days to weeks (soil water) or even months (mineral nutrients) to become stressful. Salinity can affect any process in the plant life cycle, so that tolerance will involve a complex interplay of characters. Many researchers investigated details of the physiology and biochemistry of salt tolerance and also looked at methods to screen overall plant performance that could be used in breeding programs. Plants, in general, are relatively tolerant during germination but become more sensitive during emergence and early seedling up to later stages of growth (Azhar and McNeilly, 1989; Abdel-Tawab et al., 1998a).

Differential display (DD), first described by Liang and Pardee (1992), is one of the methods for analyzing gene expression in eukaryotic cells and tissues. DD has been widely applied to study changes in mRNA expression induced by temporal developments, biotic and abiotic factors (Liang and Pardee, 1992; liang et al., 1992; McCarthy et al., 1995; Hu et al., 1996). This powerful technique simultaneously screens for both up-regulated and down-regulated transcripts in multiple cell populations under different developmental and environmental conditions.