

Studying the Influence of Prestressing and Pounding Loads on Quasi-Isolated PC Cable Stayed Bridges with Rigid Pylon Deck Connection Using Experimentally Verified Model

By

Mohamed Abdel-Shakour Hasan Hassanoun

A thesis submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

STUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

Studying the Influence of Prestressing and Pounding Loads on Quasi-Isolated PC Cable Stayed Bridges with Rigid Pylon Deck Connection Using Experimentally Verified Model

By

Mohamed Abdel-Shakour Hasan Hassanoun

A thesis submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

STUCTURAL ENGINEERING

Under the Supervision of

Prof. Dr. Akram Mohamed A.Torkey

Professor of Reinforced Concrete Structures
Structural Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr. Walid Abdel-Latif Attia

Professor of Structural Analysis and Mechanics Structural Engineering Department Faculty of Engineering, Cairo University

Prof. Dr. Eehab Ahmed Badrel-Din Khalil

Professor of Structural Engineering Construction Research Institute National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

ACKNOWLEDGMENTS

First, and foremost, all thanks to **ALMIGHTILY ALLAH**, most gracious and most merciful.

I would like to express my sincere thanks and indebtedness to Prof. Dr. *Eehab Khalil*, Prof. Dr. *Walid Attia* and Prof. Dr. *Akram Torkey* for their supervision during this work and contribution in the published paper "Influence of Deck Longitudinal Prestressing on Cable-Stayed Bridges".

Grateful acknowledgment to Dr. *Eehab Khalil* for valuable help and the objective assistance he provided for me during all steps of the current research.

I also which to express my appreciation to the staff of *Arab Academy of Science*, *Technology*, *and Maritime Transport-South valley branch* for their encouragement during this work with special thanks for Prof. Dr. *Mohamed Basher*.

Many thanks to members of the *Japan International Cooperation Agency (JICA)* team and *General Authority of Roadways and Bridges* in Egypt for providing as built drawings and for help during the inspection and investigation.

Finally, beat thanks to all those who, in one way or another, have helped in making this work possible.

Mohamed AbdEl-Shakour Hasan

DEDICATION

This work is dedicated to my dear parents for their love, support, and scarifies that guided me in all my pursuits in life, with a special dedication to my sincere wife and beloved son for their patience since the beginning of this study.

Mohamed AbdEl-Shakour Hasan

TABLE OF CONTENTS

ACKNOWLEGEMEN	NTS	V
TABLE OF CONTEN	TS	VII
LIST OF TABLES		XII
LIST OF SYMBOLS.		XII
ABSTRACT		XIV
CHAPTER 1: INTRO		
	ition	
	ecting Case Study	
•	he Current Study	
	rch	
1.5. Organization of	f the Thesis	6
CHAPTER 2: LITERA		
	ed Bridges with Central Cable Plane	
	n between Pylon, Deck and Pier	
	ing in Cable Stayed Bridges	
	of PC Cable Stayed Bridges	
	tions Analysis and Model Updating	
	earing Characteristics	
2.9. Deck Pounding	g under Seismic Effect	25
2.10. Aswan Cable S	Stayed Bridge	26
	RICAL MODELING AND ANALYSIS METH	
	ents Modeling	
3.2.1. Cables		32
3.2.4. Deck Pre	estressing Tendons	38
3.2.5. Piers		43
3.2.6. Cable-De	eck Connection	43
3.2.7. Pylon-De	eck Connection	46
	er Connection (Bearings)	
	ct in Links (Bearings)	
3.2.10. Shear Ke	ev and Plastic Hinge Modeling	53

3.3. Loading Representation and Analysis Methods	56
3.3.1. Applied Loads	
3.3.2. Seismic Analysis	56
3.3.3. Numerical Integration Approach	59
3.3.4. Damping in Mathematical Nonlinear Mode	
3.3.5. Geometric Nonlinearity	
3.3.6. Pounding Effect	
3.3.7. Hysteretic Behavior of Reinforced Concret	
CHAPTER 4: EXPERIMENTAL MEASUREMENTS	OF AMBIENT VIBRATION
4.1 Introduction	66
4.2 Field Testing Methods	
4.3 Instrumentation	
4.4 Test Setup	
4.5 Raw Data Processing and Results Extraction	
CHAPTER 5: EXPERIMENTAL RESULTS AND MO	DDEL UPDATING
5.1 Introduction	
5.2 Experimental Modal Analysis Results	
5.2.1 Experimentally Identified Modes of Deck	
5.2.2 Experimentally Identified Modes of Pylon	
5.3 Analytical Modal Analysis Results	
5.3.1 Analytical Modes of Deck	
5.3.2 Analytical Modes of Pylon	
5.4 Comparison between Analytical and Experiential I	
5.5 Analytical Model Updating	
CHAPTER 6: RESULTS AND DISCUSSION	
6.1 Introduction	116
6.2 Deck Longitudinal Prestressing Influence on Cab	
6.2.1 Methodology	
6.2.2 Analysis of Results	
6.3 Influence of Inverted V Strut Tendon System on I	PC Cable Staved Bridges
6.3.1 Methodology	
6.3.2 Analysis of Results	
6.4 Pounding Investigation under Seismic Excitations	
6.4.1 Methodology	
6.4.2 Analysis of Results	
CHAPTER 7: CONCLUSIONS AND RECOMMEND	ATIONS
7.1 Summary	
7.2 Conclusion	
7.3 Recommendation	
REFRENCES	153
APPENDIX: Samples of Raw Data	Δ1

LIST OF FIGURES

Figure 1.1: The studied statical system of cable stayed bridges	1
Figure 1.2: Brotonne Bridge with a main span of 320 m across the river Seine, France	
Figure 1.3: Sunshine Skyway Bridge with a main span of 366 m across	
Tampa Bay, Florida	2
Figure 1.4: Concrete spalling at mid-span deviators	
Figure 1.5: Rusting of cable anchor plates	
Figure 1.6: Absence of vertical neoprene pads	
Figure 2.1: Typical cross-section of Brotonne Bridge	
Figure 2.2: Typical cross-section of Sunshine Skyway Bridge	
Figure 2.3: Multicellular box girders	
Figure 2.4: Two-web box girders	
Figure 2.5: Main pylon systems according to fixation condition	
Figure 2.6: Two structural systems for a free-standing pylon supporting a central	
cable system	12
Figure 2.7: Different strategies in the numerical modeling of the deck tower connection .	13
Figure 2.8: Seventh Ahwaz Bridge shear key.	14
Figure 2.9: Deck/pier connection showing bearings and shear key	14
Figure 2.10: Connection between deck and pylon	15
Figure 2.11: Straining actions of conventional cable-stayed bridges with concrete	
deck sections.	
Figure 2.12: Static and dynamic deformations	
Figure 2.13: Induced bending in the steel laminates of bearings under shear	
Figure 2.14: Shear stress-strain relationship for various types of elastomer	
Figure 2.15: Aswan Cable Stayed Bridge	
Figure 2.16: Typical section of Aswan Cable Stayed Bridge	
Figure 2.17: Cable anchorage and inverted V struts at Aswan Cable Stayed Bridge Figure 2.18: Inverted V prestressing	
Figure 2.19: The connection between cable stay and inverted V tendons	
Figure 3.1: FE model of bridge components	
Figure 3.2: Schematic diagram showing the general configuration of deck	•33
prestressing tendons	34
Figure 3.3: Central cable plane in Aswan Cable Stayed Bridge	35
Figure 3.4: Schematic diagram showing the followed process of form finding in	
the study	35
Figure 3.5: Main deck cross-sections	.37
Figure 3.6: Box section elements	
Figure 3.7: Pylon cross-section	
Figure 3.8: Different tendons considered in modeling	.39
Figure 3.9: Top and bottom anchorage blocks	.41
Figure 3.10: External prestressing inside the deck	
Figure 3.11: Inclined struts housing inverted V tendon	
Figure 3.12: Tie down tendons from deck to pier	
Figure 3.13: The three piers supporting Aswan Bridge	
Figure 3.14: Line of anchorage points along the bridge	45

Figure 3.15: Cable anchorage block at deck	46
Figure 3.16: Pot bearing idealization	
Figure 3.18: Elastomeric bearing stiffness	47
Figure 3.19: The relationship between axial compressive stiffness and shape	
factor of bearings	48
Figure 3.20: Effect of strain history on secant shear stiffness	49
Figure 3.21: The proposed model for shear link element	50
Figure 3.22: Vertical and horizontal gaps around the Shear key	
Figure 3.23: Moment-curvature curve of the shear key cross-section	54
Figure 3.24: Material modeling for hinge properties	
Figure 3.25: Global model of Aswan Bridge	
Figure 3.26: The earthquake records (Alaqaba and Elcentro)	
Figure 3.27: Rayleigh Damping	
Figure 3.28: Hysteretic energy dissipation index	
Figure 3.29: Takeda hysteresis model	
Figure 4.1 Correlation speed, signal and weight	
Figure 4.2: Cable connections and data recording in Aswan Cable Stayed Bridge	
Figure 4.3: Proper cable anchoring	
Figure 4.4: Ideal filter characteristics	
Figure 4.5: Signal analyzer architecture	
Figure 4.6: Analog to digital conversion showing the signal with steps (Quantization)	
Figure 4.7: Measurement positions along and across deck and pylons	73
Figure 4.8: Accelerometer attached to steel plate on the concrete surface	72
inside the deck	
Figure 4.9: Vibration measurements inside the pylon base	
Figure 4.10: Path of measurements inside the eastern pylon	
Figure 4.11: Preprocessing view for the distribution of signals on pylon	
Figure 4.12: Preprocessing view for the distribution of signals along the deck	
Figure 4.13: Low pass filter response function	
Figure 4.14: Spectral estimate with too few frequency lines	
Figure 4.15: Spectral estimate with too many frequency lines producing few averages	
Figure 4.16: A good compromise: spectral peaks are seen with moderate scatter	
Figure 4.17: Singular values of spectral density matrices of 6 channels - test setup 7	
Figure 4.18: Magnitude of the auto spectal densities of channel 1 - test setup 8	
Figure 4.19: Average of all spectral densities - test setup 7	
Figure 4.20: Average of all spectral densities - test setup 1	83
Figure 4.21: Coherence of cross-spectral densities between channels 1 and 6 –	06
test setup 10	80
Figure 4.22 : Coherence of cross-spectral densities between channels 1 and 5 - test setup 5	96
Figure 4.23: Coherence of cross-spectral densities between channels 1 and 5 -	60
test setup 2	87
•	
Figure 5.1a: The first vertical mode of the deck at 0.4883 Hz – symmetrical	
Figure 5.1b: The second vertical mode of the deck at 0.83 Hz – Asymmetrical	
Figure 5.1c: The third vertical mode of the deck at 1.392 Hz – symmetrical	
Figure 5.1d: The forth vertical mode of the deck at 2.173 Hz – Asymmetrical	
Figure 5.1e: The fifth vertical mode of the deck at 2.88 Hz – symmetrical	
Figure 5.1f: The sixth vertical mode of the deck at 3.874 Hz – Asymmetrical	91

Figure 5.2a: The first torsional mode of the deck at 1.27 Hz	91
Figure 5.2b: The second torsional mode of the deck at 2.417 Hz	92
Figure 5.2c: The third torsional mode of the deck at 3.638 Hz	92
Figure 5.2d: The forth torsional mode of the deck at 4.668 Hz	92
Figure 5.2e: The fifth torsional mode of the deck at 5.591 Hz	93
Figure 5.3: The concept of pylon – deck rigid body motion	.104
Figure 5.4: Concrete modus of elasticity	.114
Figure 6.1: Cable force distribution under dead loads – side span	.118
Figure 6.2: Cable force distribution under dead loads – main span	119
Figure 6.3: Axial force diagram under main load cases (KN) - half elevation	120
Figure 6.4: Bending moment diagram under main load cases (KN.m.) - half elevation .	121
Figure 6.5: Normal stresses under dead loads (N/mm ²) – longitudinal	122
Figure 6.6: Cable force distribution under dead loads (free pylon-deck connection)	.123
Figure 6.7: Force distribution across the box section using inverted V strut and	
tendon system	125
Figure 6.8: Difference in elastic shortening (strut only – strut with box section)	126
Figure 6.9: Axial deformations under prestressing force	127
Figure 6.10: The relationship between effective prestressing forces and the resulted	
strut compression	
Figure 6.11: The distribution of compression in the two struts under torsion loads	131
Figure 6.12: Tension in inverted V tendons due to different prestressing degrees	
under dead loads	132
Figure 6.13: The relationship between effective prestressing force and the resulted	
tension in inverted V tendons	133
Figure 6.14: The distribution of tension in the two branches of the tendon under	
torsion loads	.133
Figure 6.15: The relationship between tendon tension and strut compression under	
dead load	
Figure 6.16: Deck deformation due to inverted V prestressing	135
Figure 6.17: P-delta effect in elastomeric bearings	.140
Figure 6.18: Tensile forces on a deformed shear key	.141
Figure 6.19: Horizontal displacement time history of the deck under Elcentro	.143
Figure 6.20: Impact influence on pylon moment under effect of Elcentro 0.125g	144
Figure 6.21: Impact force on the two main piers under effect of Elcentro 0.3g	144
Figure 6.22: Displacement contour of main pier under pounding effect	145
Figure 6.23: Relative horizontal displacement after pounding and just before shear key	
failure under 0.125g Elcentro	.146

LIST OF TABLES

Table 2.1: Comparison between Aswan Cable Stayed Bridge and similar bridges	28
Table 2.2: Comparison between analytical and experimental results	31
Table 3.1: Section properties	
Table 3.2: Strands specifications	
Table 3.3: Prestressing losses in inverted V tendon	
Table 3.4: Nonlinear solution control parameters	
Table 3.5: Nonlinearity sources	
Table 4.1: Technical specifications of the selected accelerometer	
Table 4.2: Session 1- test setups and accelerometer positions	
Table 4.3: Session 2- test setups and accelerometer positions	
Table 4.4: Session 3- test setups and accelerometer positions	
Table 4.5: Session 4- test setups and accelerometer positions	
Table 4.6: Session 5- test setups and accelerometer positions	
Table 4.7: Session 6- test setups and accelerometer positions	
Table 4.8: Session 7- test setups and accelerometer positions	
Table 4.9: Session 8- test setups and accelerometer positions	
Table 4.10: Session 9- test setups and accelerometer positions	
Table 5.1: Experimentally identified modes of pylon	94
Table 5.2: Analytical modal shapes and frequencies	98
Table 5.3: Pylon modes of vibration – Analytical analysis	105
Table 5.4: Comparison of analytical results with experimentally identified	
results of deck	
Table 5.5: Agreement between analytical and identified pylon longitudinal modes	
Table 5.6: Agreement between analytical and identified pylon lateral modes	111
Table 5.7: Comparison of updated analytical results with experimentally identified	
results of deck	
Table 5.8: Modified parameters for modal updating	
Table 6.1: Flexural stresses in box section under service loads (N/mm ²)	
Table 6.2: Quantity of deck tendons and stay cables	
Table 6.3: Vertical displacement at mid-span under different load cases (mm)	
Table 6.4: Application on prestressing calculation	
Table 6.5: Parameters of studying inverted V Prestressing	
Table 6.6: Vertical components of cable tension	
Table 6.7: Forces in the inverted V tendons and inclined struts	
Table 6.8: Pylon straining actions at base section under 0.125g event	
Table 6.9: Pylon straining actions at base section under 0.3g event	
Table 6.10: Cable forces under Elcentro excitation just after pounding (ton)	
Table 6.11: Main pier response under 0.125g event – just before failure	
Table 6.12: Main pier response under 0.3g event – just before failure	147

LIST OF SYMBOLS

E	Flastic modulus taking into consideration segging effect
$egin{array}{c} E_{ m eff} \ E_{ m o} \end{array}$	Elastic modulus taking into consideration sagging effect Elastic modulus of cable material
-	Specific weight of cable material
γ σ	Axial stress in cable
\mathcal{L}_{h}	Projected length of cable in plan
$t_{\rm e}$	Elastomer single layer thickness
t	Total elastomer thickness
μ	Coefficient of friction
K _r	Unloading stiffness
G	Shear modulus
S	Shape factor
K_{H}	Horizontal stiffness of bearings
K_V	Vertical stiffness of bearings
K_{Θ}	Rotational stiffness of bearings
В	Bulk modulus
K_p	Nonlinear impact spring stiffness
g_p	Expansion joint gap length
\mathbf{u}_1	Displacement of bridge end 1
\mathbf{u}_2	Displacement of bridge end 2
C_p	Impact damping coefficient (energy dissipated during impact)
ζ	Impact damping ratio
e	Coefficient of restitution (represents the degree of rebound)
m_i	Mass of span
F	Cable tension
V	Vertical component of cable tension (equivalent to total vertical loads of deck)
V_{w}	The portion of deck loads carried by the web
V_b	The portion of deck loads carried by the central beam
Ø	Load distribution ratio
P C	Tendon jacking force The generated compression force in the strut
T	The generated compression force in the strut The effective prestressing tension in inverted V-tendons
Θ	Cable vertical angle of inclination
	Strut/Tendon vertical angle of inclination
γ ξ	Web vertical angle of inclination
ΔP	Total losses in jacking force (short term + long term)
α	Percentage of total loss in jacking force
η	Percentage of minimum jacking force to cable tension
γ	Specific weight of cable material
σ	Axial stress in cable
$L_{\rm h}$	Projected length of cable in plan
$t_{\rm e}$	Elastomer single layer thickness
$S_d(t)$	Design response spectrum
·- u(-)	