EFFET OF MICROPILES IN CONTROLLING THE IMPACT OF PIPELINE DETERORTION ON ADJACENT BUILDINGS

By

NAJIA ASSEM MOHAMED MAHFOUZ

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
Master of Science
In
Structural Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

EFFET OF MICROPILES IN CONTROLLING THE IMPACT OF PIPELINE DETERORTION ON ADJACENT BUILDINGS

By

NAJIA ASSEM MOHAMED MAHFOUZ

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
Master of Science
In
Structural Engineering

Under the Supervision of

Prof. Dr. ADEL YEHIA AKL
Professor of Structural Analysis & Mechanics
Structural Engineering Department
Faculty of Engineering, Cairo University

Dr. MANAR MAHER HUSSEIN
Associate Professor
Structural Engineering Department
Faculty of Engineering, Cairo University

Dr. KAMAL GHAMERY METWALLY

Assistant Professor Civil Engineering Department Faculty of Engineering, Beni.-Suef University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

EFFET OF MICROPILES IN CONTROLLING THE IMPACT OF PIPELINE DETERORTION ON ADJACENT BUILDINGS

By

NAJIA ASSEM MOHAMED MAHFOUZ

A Thesis Submitted to
The Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirement for the Degree of
Master of Science
In
Structural Engineering

Approved by the Examining Committee:

Prof. Dr. Adel Yehia Akl, Thesis Main Advisor

Professor of Structural Analysis & Mechanics, Faculty of Engineering, Cairo University

Dr. Manar Maher Hussein, Member

Associate Professor, Faculty of Engineering, Cairo University

Prof. Dr. Osman M. O. Ramadan, Internal Examiner

Professor of Structural Analysis & Mechanics, Faculty of Engineering, Cairo University

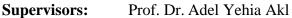
Pro. Dr. Osman El-Sayed Shallan, External Examiner

Professor of Structural Analysis & Mechanics, Faculty of Engineering, Zagazig University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

Engineer's Name: Najia Assem Mohamed Mahfouz

Date of Birth: 25-10-1988 **Nationality:** Egyptian


E-mail: Najiaassem@gmail.com

Phone: 01004777417

Address: 6th of October City – Giza.

Registration Date: 1 / 10 / 2010 **A warding Date**: / / 2015

Degree: Master of Science. **Department:** Structural Engineering

Dr. Manar Maher Hussein

Dr. Kamal Ghamery Metwally, Assistant Professor in Civil

Engineering Dept., Beni-Suef University

Examiners: Prof. Dr. Adel Yehia Akl

Dr. Manar Maher Hussein

Prof. Dr.Osman El-Sayed Shallan, Professor at Zagazig University

Prof. Dr. Osman M.O. Ramadan

Title of Thesis:

EFFET OF MICROPILES IN CONTROLLING THE IMPACT OF PIPELINE DETERORTION ON ADJACENT BUILDINGS

Key Words:

Pipelines, building, soil, micropile.

Summary:

Sewer pipelines deterioration had a high impact on the settlement of surrounding structures in urban areas. In this research, the effect of using micropiles in controlling the settlement of structures affected by sewer pipelines deterioration was studied. A three-dimensional finite elements model was implemented, utilizing the "ANSYS 11" software. Different parameters were investigated: the effect of the length of micropile, the distance of micropile from the footing of building, the diameter of micropile , the inclination angle from the vertical axis , and finally types of Footing.

ACKNOWLEDGEMENTS

I owe my gratitude to all those people who have made this dissertation possible and because of whom my graduate experience at Cairo University has been one that I will cherish forever.

First and foremost I would especially like to thank my advisor, *Prof. Dr. Adel Yehia Akl* for his generous time and commitment. Throughout my master work, he encouraged me to develop independent thinking and research skills. He continually stimulated my analytical thinking and greatly assisted me with scientific writing. He is one of the rare advisors that students dream that they will find. In the same vein, I am also obliged to my advisors *Dr. Manar Maher Hussein* and *Dr. Kamal Ghamery Metwely for* their guidance, continuous support, helpful suggestions, comments and encouragement throughout this thesis. Without their support, I could not have completed the thesis. Most importantly, all of these wouldn't have been possible without the love and patience of my family. I feel a deep sense of gratitude to *My Parents*, who always show persisting love and support my decision. *My Sister and My Brother*, have been a constant source of love, concern, support, and strength all these years.

Table of content

ACKNOWLEDGEMENTS	I
TABLE OF CONTENT	II
LIST OF TABLES	III
LIST OF FIGURES	IV
ABSTRACT	VII
Chapter 1 : INTRODUCTION	1
1.1 Background	1
1.2 Scope of research	2
1.3 Layout of Thesis	3
Chapter 2 : LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Failure in sewer pipeline	4
2.2.1 Sewer depth	5
2.2.2 Age of sewer	6
2.2.3 Sewer size	7
2.3 Ground disturbance	7
2.4 Soil/backfill type	7
2.5 Surface movements	8
2.5.1 Transverse behavior	8
2.5.2 Longitudinal behavior	9
2.5.3 Subsurface movements	9
2.6 Building damage assessment	9
2.7 Micropile history	10
2.8 Micropiles classification	11
2.9 Numerical studies of soil-pipe-building interaction	12
2.10 Building settlement due to deterioration of pipeline	13
2.11 Fuzzy logic to predict building damage	13

2.12	Use of micropiles to strengthening Soil	14
2.12	2.1 Use micropiles in foundation	14
2.12	2.2 Numerical modeling of micropile square footing	14
2.12	2.3 Numerical study on the behavior of inclined micropiles	14
2.12	2.4 Effect of the inclination and length of micropile	15
2.12	2.5 Skin friction of micropiles embedded in gravelly soils	15
2.12	2.6 Bond strength of micropile-to-grout	16
2.12	2.7 Compressive strength of micropile-to-grout	16
2.12	2.8 Performance of footing with micropiles	16
Cha	apter 3: THEORETICAL DEVELOPMENT	17
3.1	Introduction	17
3.2	Finite element method	17
3.2.	1 Solution for FEM	17
3.2.	2 Nonlinear finite element	18
3.3	Material models for soil	19
3.3.	1 Linear elastic model	19
3.3.	2 Mohr-Coulomb model	19
3.4	Material model for reinforced concrete structures	20
	1 General	
3.4.	2 Concrete	20
3.4.	3 Steel reinforcement	21
3.5	Interface elements	23
3.5.	1 Description	23
3.5.	2 Interface model	24
Cha	apter 4 : FINITE ELEMENT MODELING	31
4.1	Introduction	31
4.2	The used software	31
4.3	Validation of micropile results using ANSYS	32

4.3.	1 Micropile interface element	32
4.3.	2 Sewer pipeline deterioration and its effect on adjacent buildings	32
4.4	Case study	33
	1 Soil Media	
4.4.	2 Modeling of structure elements	34
4.5	Material properties	34
4.5.	1 Soil media	34
4.5.	2 Modeling of structure elements	35
4.6	Interface element	35
4.6.	1 Building and pipeline with soil media	36
4.6.	2 Soil media and micropiles	37
4.7	Numerical model	38
4.8	Boundary conditions	41
Cha	apter 5 : RESULTS AND DISUSSION 42	
5.1	Introduction	42
5.2	Description of the analyzed models	42
5.3	Parametric study	45
5.3.	1 Without failure in pipeline	45
5.3.	2 With failure in pipeline	45
5.4	Effect of pipe settlement on building	45
5.5	Effect of micropile distance	47
5.6	Effect of micropile length	50
5.7	Effect of micropile angle of inclination	53
5.7.	1 Effect of angle without pipeline settlement	53
5.7.	2 Effect of angle with pipeline settlement	54
5.7.	3 Effect of angle with pipeline settlement for same vertical projection	56
5.8	Effect of micropile diameter	58
5.9	Effect of number and arrangement of micropiles	60
5.10	Effect of micropiles on types of foundation	65

Cha	apter 6: SUMMARY AND CONCLUSION	70
6.1	Summary	70
6.2	Conclusions	70
6.3	Recommendations for future research work	71

List of Tables

Table 4.1. Geotechnical parameters	35
Table 4.2. Structural elements properties	35

List of Figures

Figure 2.1: A sewer pipe deteriorating to the point of collapse due to deformation [6]	6
Figure 2.2: Geometry of the tunnel induced settlement [16]	8
Figure 2.3: A typical construction sequence the drilling pile shaft to the required depter [23]	
Figure 2.4: Micropile Classification based on Grouting Method [23]	.12
Figure 2.5: Negative and positive battered piles [29]	15
Figure 3.1. Newton-Raphson method [36]	19
Figure 3.2: Failure criterion of Mohr-Coulomb model. [36]	20
Figure 3.3. Typical uniaxial compressive and tensile stress-strain curve for concrete. [36]	
Figure 3.4. Idealized stress-strain diagram for reinforcing steel [36]	22
Figure 3.5: Interface element [36]	23
Figure 3.6. Interface points between body A and body B [36]	. 27
Figure 3.7. Sign convention of contact forces and displacements [36]	28
Figure 4.1. Bearing capacity graph for micropile 3m length with various inclinations.	.32
Figure 4.2: Effect of building location on vertical settlement of building [25]	.33
Figure 4.3: 8-Node solid element geometry[36]	34
Figure 4.4: Orientation of interface element.[36]	36
Figure 4.5: Friction model [36]	.37
Figure 4.6: Node-to-Node Contact Elements [36].	38
Figure 4.7: Half-space mesh of the soil, micropiles and pipe	39
Figure 4.8: Elevation for finite element mesh for model	39
Figure 4.9: 3-D finite element mesh for R.C. building with isolated footings	40
Figure 4. 10: 3-D finite element mesh for R.C. building with strip footings	40

Figure 5.2: Plan of model
Figure 5.3: Settlement of building with and without damage in pipeline in longitudinal direction
Figure 5.4: Settlement of building with and without damage in pipeline in transversal direction
Figure 5.5: Elevation of parametric study of distance between micropile and foundation
Figure 5.6: Effect of micropile distance in the settlement of building without pipe failure
Figure 5.7: Effect of micropile distance in the settlement of building in the longitudinal direction
Figure 5.8: Effect of micropile distance in the settlement of building in the transverse direction
Figure 5.9: Elevation of parametric study of effect of micropile length
Figure 5.10: Effect of micropile length in the settlement of building without pipeline settlement
Figure 5.11: Effect of micropile length in the settlement of building in the longitudinal direction
Figure 5.12: Effect of micropile length in the settlement of building in the transverse direction
Figure 5.13: Illustration of the studied angle inclination of micropile
Figure 5.14: Effect of micropile angle in the settlement of building without pipeline settlement
Figure 5.15: Effect of angle of micropile on the settlement under building in longitudinal direction
Figure 5.16: Effect of angle of micropile in the settlement under building in transverse direction
Figure 5.17: Effect of inclined angle 10° with the same vertical length
Figure 5.18: Effect of inclined angle 20° with the same vertical length
Figure 5.19: Elevation of parametric study of effect of micropile diameter 58
Figure 5.20: Effect of diameter of micropile in the settlement under building without

Figure 5.21: Effect of diameter of micropile in the settlement under building in longitudinal direction	59
Figure 5.22: Effect of diameter of micropile in the settlement under building in transverse direction	60
Figure 5.23: Section plan for projection of single micropile	61
Figure 5.24: Section plan for projection of three micropiles	62
Figure 5.25: Section plan for five micropiles	62
Figure 5.26: Section plan for nine micropiles	63
Figure 5.27: Elevation of parametric study of effect of number of micropiles	63
Figure 5.28: Effect of numbers of micropiles in the settlement under building in longitudinal direction	64
Figure 5.29: Effect of arrangement of micropiles in the settlement under building in transverse direction	64
Figure 5.30: Elevation of parametric study effect of micropile on different types of foundation	66
Figure 5.31: Plan for Raft foundation	66
Figure 5.32: Plan for Strip Footing	67
Figure 5.33: Plan for Isolated Footing	67
Figure 5.34: Effect of micropiles on the building settlement for Raft foundation	68
Figure 5.35: Effect of micropile on the building settlement for Strip footing	68
Figure 5.36: Effect of micropile in the building settlement for isolated footing	69
Figure 5.37: Effect of micropile on the building settlement for different types of foundations	69

Abstract

Sewer pipelines deterioration had a high impact on the settlement of surrounding structures in urban areas. After such incidents, adjacent structures should be supported to prevent building deterioration due to continuous settlement of pipes.

Strengthening foundations with micropiles is progressively being used, due to the major advantages that this technique presents. Nevertheless, the influence of some relevant parameters in the overall behavior of the retrofitted foundations has not yet been studied. Generally, micropiles are installed in holes drilled through the existing RC footing, which are then filled with grout.

This thesis presents the numerical analysis results of three-dimensional (3-D) Finite Elements Method, utilizing "ANSYS 11" software, to simulate the relationship between: pipes, structures, micropiles and surrounding soil ,the objective is to calculate the effect of micropiles in reducing settlement of soil under building structure.

At first a soil media with properly given properties is modeled and the damage in pipeline, and its settlement are studied. Then, micropiles with variable diameter and with various lengths; 5m to 11m are added and the settlement of footing is studied.

Then, the settlement graphs for this soil with various inclinations 0 to 20 degree with the vertical axes which are used in practical usages inserted and with various number of micropiles in this soil a settlement of footing is studied. Finally, comparisons between results obtained from these studies are done. The obtained results show that use of micropiles in sandy soils leads to decrease in settlement. The results of this study can provide valuable information about use of micropiles in soils.

Chapter 1: INTRODUCTION

1.1 Background

Soil-Structure interaction is widely covering several areas of civil engineering problems. The interaction between ground and several underground structural elements has a major effect in settlement in structural building. Studying soil-structure interaction for several cases is most important to control damage in structural building. Nowadays studying numerical models for soil-structure interaction by software could appropriately simulate the real case for buildings.

One of the most important problems of soil structure interaction is sewer pipelines deterioration had a high impact on the settlement of surrounding structures in urban areas. After such incidents, adjacent structures should be supported to prevent building deterioration due to continuous settlement of pipes.

Micropiles has a recognizable effect in increasing the bearing capacity and reducing the displacement of building particularly and in strengthening the foundations.

In this research, the study of the effect of using micropiles on settlement of building under pipelines deterioration is performed with two steps; steady state and pipeline failure state. The steady state step is concerned for effect of settlement of soil.

The pipeline failure operation is modeled by settlement of the building with using micropiles to strength building. Different parameters were investigated to reach such goal: the effect of the length of micropile, the distance of micropile from the footing of building, the diameter of micropile, the inclination angle from the vertical axis, number and arrangement of micropile, and finally types of foundation.

This paper presents the numerical analysis results of three-dimensional (3-D) Finite elements Method, utilizing the "ANSYS 11" software, to simulate the relationship between: micropiles, pipes, structures and surrounding soil to calculate the effect of micropiles in reducing the settlement of soil under building structure. ANSYS software is widely used for analyzing such cases for soil mechanics, linear, and nonlinear.