FEEDING HABITS OF TETRANYCHUS URTICAE KOCH (ACARI : TETRANYCHIDAE) ON

SOLANUM SPECIES

$\mathbf{B}\mathbf{y}$

Ahmed Eid Abdel-Megeed Mahgoob

B. Sc. (Entomology) Ain Shams University, 1985 M. Sc. (Agric. Zoology) Ain Shams University, 1992

A thesis submitted in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY in Agricultural Science

(Agricultural Zoology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

APPROVAL SHEET

FEEDING HABITS OF TETRANYCHUS URTICAE KOCH (ACARI : TETRANYCHIDAE) ON

SOLANUM SPECIES

By

Ahmed Eid Abdel-Megeed Mahgoob

B. Sc. (Entomology) Fac. of Agic., Ain Shams University, 1985

M. Sc. (Agric. Zoology) Fac. of Agic., Ain Shams University, 1992

This thesis for Ph.D dgree has been approved by:

Prof. Dr. Madeha Mohamed Abdel Hameid.....

Prof. of Agricultural Zoology, Department of Economic Entomology Fac. of

Agriculture, Al exandria University.

Prof. Dr. Mahmoud Ezz El Din Amhed Sarwat.....

Prof. Of Agricultural Zoology, Department of Plant Protection Fac. of

Agriculture, Ain Shams University.

Prof. Dr. Sherief Mostafa Hafez....

Prof. Of Agricultural Zoology, Department of Plant Protection

Fac. of Agriculture, Ain Shams University.

Date of examination : /

/ 2000

FEEDING HABITS OF TETRANYCHUS URTICAE KOCH (ACARI : TETRANYCHIDAE) ON

SOLANUM SPECIES

By

Ahmed Eid Abdel-Megeed Mahgoob

B. Sc. (Entomology) Fac. of Agic., Ain Shams University, 1985 M. Sc. (Agric. Zoology) Fac. of Agic., Ain Shams University, 1993

Under the supervision of:

Prof. Dr. Sherief Mostafa Hafez.

Prof. of Agricultural Zoology, Fac. of Agriculture, Ain Shams University.

Prof. Dr. Abdel-Fattah A. Selim

Prof. of Pesticide Chemistry and Toxicology, Fac. of Agriculture, Ain Shams University.

Prof. Dr. Sami A. Habib

Prof. of Agricultural Botany Fac. of Agriculture, Ain Shams University.

ABSTRAct

Ahmed Eid Abdel-Megeed Mahgoob. Feeding Habits of *Tetranychus urticae* Koch (Acari :Tetranychidae) on *Solanum* species. Unpublished Doctor of Philosophy Degree, Department of Plant Plant Protection, Faculty of Agriculture, Ain Shams University 2000.

Four Solanum species of eggplant and potato were evaluated for resistance to *Tetranychus urtica*e Koch and its effect on the leaf chemical components. The egg-plant species were *S. mammosum* L. Pl 245968 (a wild species) and *S. melongena* (a cultivated species), while potato species were *S. berthaultii* Haweeks Pl 265857(a wild species) and *S. tuberosum* L. (a cultivated species). Evaluation of resistance was based on the mite population in the greenhouse. The wild species of eggplant and potato were more highly resistance than cultivated ones. The eggplant, *S. melongena*, was more highly susceptible than the potato *S. tuberosum*.

Mite infestation reduced the chlorophyll and phosphorus content in infested plant leaves of cultivated eggplant and potato. Also there were a reduction in the leaf area and plant length of eggplant S. melongena. Mite feeding affected the leaf tissue structure and destroyed chloroplasts at the feeding sites.

The leaf surfaces of eggplant and potato wild species were covered with glandular trichomes, while the cultivated eggplant had non-glandular trichomes. Crude leaf surface washes of eggplant and potato (wild species) caused repellency, reduced fecundity and were

toxic to females *T. urticae*. Crude washes of potato *S. tuberosum* had similar but less activity.

A series of experiments were conducted to study the biochemistry and activity of trichome exudates from the cultivated and wild species of eggplant and potato. Specifically, crude leaf washes were removed, then fractionated and subfractionated via Thin Layer Chromatography (TLC) and High Performance Liquid Chromatography (HPLC). To detect the toxic effect of subsequent fractions and subfractions against females of *T. urticae*, a novel bioassay technique was developed. All fractions and subfractions were bioassayed. Finally the highest toxic subfractions were purified using (HPLC), then were identified using Gas Chromatography-Mass spectrometer.

Crude washes of eggplant *S. mammosum* yielded 15 fractions, while crude washes of *S. melongena* yielded 5 fractions. Crude washes of potato *S. berthaultii* yielded 10 fractions, while crude washes of *S. tuberosum* yielded 4 fractions by TLC. The fractions of *S. mammosum* and *S. berthaultii* were more toxic than those of *S. melongena* and *S. tuberosum*.

The toxic fractions of *S. mammosum* yielded 57 subfractions, while the toxic fraction of *S. berthaultii* yielded 8 subfractions were which separated by HPLC. The subfractions from *S. mammosum* were more toxic than those from *S. berthaultii*. The highest toxic subfraction of *S. mammosum* was identified as dodecanal, while the most toxic subfraction obtained from *S. berthaultii* consisted of sugar esters.

Key words:

Tetranychus urticae (Tetranychidae); Solanum species, eggplant, potato, glandular trichomes, plant resistance, feeding damage, chlorophyll, phosphorous, phenol.

ACKNOWLEDGEMENT

The successful completion of the research reported here is the product of input from many people who directly or indirectly generously supported author in various aspects. So the author wishes to express his deep gratitude and sincere and sincere appreciation to Dr. Sherief M. Hafez, Professor of Agricultural Zoology. Department of Plant Protection, Faculty of Agriculture, Ain Shams University, for suggesting the problem, technical guidance, and constructive criticism during the preparation of the of the manuscript.

The author feels most indebted to Dr. Abdel-Fattah A. Selim,
Professor of pesticide Chemistry and Toxicology, Department of Plant
Protection at the same Faculty, for his supervision and his generous aid.

Sincere thanks and appreciation are offered to Dr. Sami A.

Habib Professor of plant anatomy, Department of Agricultural Botany at the same Faculty his supervision and keen interest to interpretation the damaged plant tissues and plant trichomes, and invaluable support of this research.

The author also feels most indebted to Dr. Grayson C. Brown Faculty of Agriculture, University of Kentucky USA, for his keen interest during the course of this work, providing facilities for practical studies, and for his unfailing help, cooperation, and hospitality during the two year stay in USA according to the Channel Program.

CONTENTS

	l. In	troduct	tion	1
II.	Review	of	Literature	3
	Populatio	n of ph	nytophagous mites on resistant and	
	suscep	tible	plants	3
	Effect of	mite in	festation on the plant growth, yield, -	J
	chemi	cal co	mponents and physiological process	5
	A- E	Effect	of mite infestation on plant growth and yield	6
	B-	chem	ical components and physiological process	7
	3- Eff	ect of	mite infestation on the leaf tissues	10
	4- P	lant le	af surface trichomes	11
	5- P	lant de	efence mechanism	12
III.	Materials	ar	nd Methods	21
	1-Mi	te colc	ony	21
	2-P	lant sp	pecies	21
	3-Gro	wth ar	nd infestation of plants	21
	4-Le	af sam	npling	23
	5-C	araten	oid analysis	23
	6-Ch	loropi	hyll analysis	24
	7-Nitro	gen a	nd phosphorus analysis	24
	8-Ph	enolic	s analysis	25
	9-Effe	ct mite	e feeding on the leaf tissues	25
	10-l	₋eaf su	ırface trichomes	27
	11-Inv	estigat	tion of the defensive components	27
	12-C	onduc	t the experiment	28
			g-plant subfractions	32
			on and Identification the active subfractions	33

	(HPLC fractions)	
	15-HPLC potato subfractions	35
	16-Purification and Identification the active subfractions	
	(HPLC fractions)	36
IV.	Results	39
	A- Selection of the resistant and susceptible plants	39
	Population of <i>T. urticae</i> on egg-plants <i>S.</i>	
	melongena and S. mammosum	39
	Effect of <i>T. urticae</i> on the leaf area and plant	
	length of egg-plant S. melongena and S.	
	mammosum	39
	3- Effect of T. urticae on leaf components of egg-	
	plant S. melongena and S. mammosum	42
	4- Population of T. urticae on potato S. tuberosum	
	and <i>S. berthaultii</i>	42
	5- Effect of T. urticae on leaf area and plant length of	
	potato S. tuberosum and S. berthaultii	47
	6- Effect of <i>T. urticae</i> on leaf components of potato <i>S.</i>	
	tuberosum and S. berthaultii	48
	B- Comparison between the occurrence of <i>T. urticae</i> on	
	the susceptible egg-plant S. melongena and suscept-	
	ible potato S. tuberosum	48
	C- Comparison between the leaf components of the resis-	
	tant and susceptible egg-plant species(comparison	
	based on the plant leaves free of mites)	48
	D- Comparison between the leaf components of the resis-	
	tant and susceptible potato species(comparison based	
	on the plant leaves free of mites)	49
	E- Effect of the mite feeding on leaf tissues structure	55
	F- The difference between the leaf surface trichomes of	62

	the egg-plant and potato species
	G- Investigation of the defensive components
	H- Plant hair exudates as a cause of plant resistance
	Egg-plant
	Potato
	I- Comparison the resulted yeild of the crude leaf surface
	washes for the egg-plant and potato species under study
	J- Document the repellency, reduced of fecundity and
	toxicity of crude leaf surface washes
	Repellency
	Fecundity
	Toxic effect
	K- Fractionate crude leaf washes, using bioassay guided
	separation, to identify active fractions
	L- Identification of active subfractions and the toxic
	compounds
	M- Identification of the toxic compound in egg-plant
	N- Identification of the toxic compound in potato
V .	Discussion
	VI. Summary
	VII. References
	Arabic Summary

LIST OF TABLES

Νo		Page
1	Average number of mite stages <i>T. urticae</i> per 1 cm ² leaf area	
	of eggplant Solanum melongena L.Millionaire Hyberd Cultivar	
	and S. mammosum PI 245968(a wild sp.) after two weeks from	
	the mite ifestation under greenhouse	
	condition	40
2	Efect of <i>T. urticae</i> infestation on the Leaf area and plant	
	length of eggplant S. melongena and S. mammosum two	
	weeks after mite infestation under greenhouse	
	condetion	40
3	Effect of <i>T. urtica</i> e infestation on the leaf components of two	
	egg-plant species after two weeks under greenhouse	
	conditions	43
4	Average number of mite stages <i>T. urticae</i> per 1 cm ² leaf area	
	of potato Solanum tuberosum L. Red Pontiac Cultivar and S.	
	berthaultii Pl 265857 (a wild sp.) two weeks after mite	
	ifestation under greenhouse	
	condition	44
5	Efect of <i>T. urticae</i> infestation on the Leaf area and plant	
	length of potato Solanum tuberosum L. Red Pontiac Cultivar	
	and S. berthaultii PI 265857 (a wild sp. two weeks after mite	
	infestation under greenhouse	
	condetion	47
6	Effect of <i>T. urticae</i> infestation on the leaf components of two	
	potato species after two weeks under greenhouse conditions	50

	Average number of <i>T. urtica</i> e stages per 1 cm ² leaf area on	7		
	egg-plant S. melongena L. Millionaire Hybrid Cultivar and			
	potato Solanum tuberosum L. Red Pontiac Cultivar two weeks			
	after mite ifestation under greenhouse			
51	conditions			
	Comparison between leaf components which is playing a role	8		
	in plant resistant within egg-plant species under study			
	(comparison based on plant leaves free of			
54	mites)			
	Comparison between leaf components which is playing a role	9		
	in plant resistant within potato species under sttudy (
	comparison based on plant leaves free of			
54	mites)			
	Average deposited eggs, alive, dead and repelent <i>T. urticae</i>	10		
	confined for 48 hr on washed leaf discs of egg-plant species			
	S. mammosum and S. melongena by ethanol 95% and not			
70	washed ones			
	Average deposited eggs, alive, dead and repellent T. urticae	11		
	confined for 48 hr on washed leaf discs of potato species S.			
	berthaultii and S. tuberosum by ethanol 95% and not			
74	washed ones			
	Average number of tangled and free T. urticae females	12		
	confined for 1 and 3 hours on bean leaf discs treated by			
	crude leaf washes from egg-plant S. mammosum and S.			
	melongena at different concentrations, 0, 30, 61, 22, and 244			
81	<i>u</i> g/cm²			
	Average number of tangled and free T. urticae females	13		
	confined for 1 and 3 hours on bean leaf discs treated by			
	crude leaf washes from potato S. berthaultii and S. tuberosum			
84	at different concentrations 0 30 61 22 and 244 up/cm ²			

14	Oviposition response and repellency effect of crude leaf	
	washes from egg-plant species S. mammosum and S.	
	melongena on T. urticae at lowest concentration (0, 30	
	ug/cm2) after 48 hours	88
15	Oviposition response and repellency effect of crude leaf	
	washes from potato species S. berthaultii and S. tuberosum	
	on <i>T. urticae</i> at lowest concentration (0, 30 ug/cm²) after 48	
	hours	88
16	The Toxic effect of crude leaf surface washes from egg-plant	
	S. mammosum and S. melongena on T. urticae at	
	concentration of 0.5, 1 and 2 ug/mite after 24, 48 and 72 hours	
		92
17	The Toxic effect of crude leaf surface washes from potato S.	
	berthaultii and S.tuberosum on T. urticae at concentration of	
	0.5, 1and 2 <i>u</i> g/mite after 24, 48 and 72	
	hours	94
18	Effect of TLC crude fractions from egg-plant S. mam -	
	mosum (resistant species) and S.melongena (susceptible	
	species) on survivorship of female <i>T. urticae</i> at	
	concentration of 1.0 ug/mite after 24, 48 and 72 hours	
		100
19	Effect of TLC crude fractions from potato S. berthaultii	
	(resistant species) and S.tuberosum (susceptible species) on	
	survivorship of females T. urticae at concentration of 1.0	
	ug/mite after 24, 48 and 72 hours	105
20	Effect of egg-plant S. mammosum HPLC subfractions crude	
	fraction (1) on the survivorship of <i>T. urticae</i> at concentration	
	of 0.5 ug/mite after 24, 48 and 72 hours	113
21	Effect of egg-plant S. mammosum HPLC subfractions crude	
	fraction (2) on the survivorship of <i>T. urticae</i> at concentration	113

0.5 ug/mite after 24, 48 and 72 hours... 22 Effect of egg-plant S. mammosum HPLC subfractions crude fraction (3) on the survivorship of T. urticae at concentration of 0.5 ug/mite after 24, 48 and 72 hours. 114 23 Effect of egg-plant S. mammosum HPLC subfractions crude fraction (4) survivorship of T. urticae at on the concentration of 0.5 ug/mite after 24, 48 and 72 hours... 114 24 Effect of egg-plant S. mammosum HPLC subfractions crude fraction (5) on the survivorship of T. urticae at concentration of 0.5 ug/mite after 24, 48 and 72 hours... 115 Effect of egg-plant S. mammosum HPLC subfractions crude fraction (6) on the survivorship of T. urticae at concentration of 0.5 ug/mite after 24, 48 and 72 hours.. 115 Effect of egg-plant S. mammosum HPLC subfractions crude fraction (11) on the survivorship of *T. urticae* at concentration of 0.5 ug/mite after 24, 48 and 72 hours.. 116 Effect of egg-plant S. mammosum HPLC subfractions fraction(4) after purifecation and authenitic dodecanal on the survivorship of T. urticae at concentration of 0.5 117 *u*g/mite after 2, 6, 24, 48 and 72 hours..... Effect of potato S.berthaultii HPLC subfractions of crude 28

fraction (1) on the survivorship of T. urticae at concentration

LIST OF FIGURES

No		Page
1	Irrigation and fertilizing system	22
2	Mite clip cage	26
3	Microsyringe	29
4	Average number of mite stages of <i>T. urticae</i> per 1 cm ² leaf	
	artea on egg-plant S. melongena Millionaire Hybrid Cultivar	
	and S. mammosum PI 245 968 (a wild sp.) after two weeks	
	from mite infestation under greenhouse	
	condition	41
5	Leaf components of two egg-plant species, two weeks after	
	infestation by 200 females of T. urticae per plant under	
	greenhouse conditions	45
6	Average number mite stages of <i>T. urticae</i> per 1 cm ² leaf area	
	on potato S. tuberosum Red Pontiac Cultivar and S.	
	berthaultii PI 265857 (a wild sp.) after two weeks from mite	
	infestation under greenhouse	
	condition	46
7	Leaf components of two potato species, two weeks after	
	infestation by 200 females of <i>T. urticae</i> per plant under	
	greenhouse conditions	52
8	Average number of mite stages of <i>T. urticae</i> per 1 cm ² leaf	
	area on egg-plant S. melongena and S. tuberosum after two	
	weeks from mite infestation under greenhouse	
	conditions	53
9	Light and electron microscopy micographs demonst-rated	

	X	
	that, the injury feeding effect of <i>T. urticae</i> on the leaf tissues	
	of egg-plant S. melongena (cultivated species): a,b,c,d,e,f,	
	and g are light microscopy while the rest are	
	transmission	57
10	Scaining electron micographs shows the morphological	
	differences of leaf surface trichomes between two of potato	
	species: A1 is S. tuberosum (cultivated species), A2 is S.	
	berthaultii (wild species): B and C are magnification of the	
	different types of trichoms in both species. B1& C1 cultivated	
	species; B2 & C2 wild	
	species	63
11	Scaining electron micographs shows the morphological	
	differences of leaf surface trichomes between two egg-plant	
	species: A1 is S. melongena (cultivated species), A2 is S.	
	mammosum. (wild species): B, C and D are magnification of	
	the different types of trichomes in both species B1& C1	
	cultivated species; B2, C2, D1 and D2 wild species	
		65
12	Average deposited eggs of <i>T. urticae</i> confined for 48 hours on	
	washed leaf discs of egg-plant species <i>S. mammosum</i> and	
	S. melongena by ethanol 95% and not washed	_,
40	ones	71
13	Average of alive, dead and repellent of <i>T. urticae</i> confined for	
	48 hr on washed leaf discs of egg-plant species <i>S. mammosum</i> and <i>S. melongena</i> by ethanol 95% and not	
	washed ones	72
14	Average deposited eggs of <i>T. urticae</i> confined for 48 hours on	, _
'-	washed leaf discs of potato species S. berthaultii and S.	
	tuberosum by ethanol 95% and not washed	
	ones	75
15	Average of alive, dead and repellent of <i>T. urticae</i> confined for	76