

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

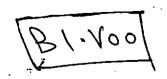
التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من


To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

Knee Cage Versus Below Knee Orthosis In The Control Of Genu Recurvatum In Cerebral Palsied Children

THESIS

Submitted In A partial Fulfillment Of The Requirement Of The Master Degree In Physical Therapy

By

Nivirt Girgis Dawoud Tadrous

B.Sc. in Physical Therapy

Cairo University
Faculty of Physical Therapy
2002

Supervisors

Prof. Dr. Emam H. El-Negmy

Dean of the Faculty of Physical Therapy
Professor in the department of Physical Therapy for
Disturbance of growth and development
In children and its surgery
Faculty Physical Therapy
Cairo University

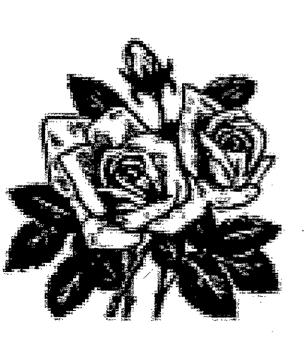
Prof. Dr. Nagy Abd El-wahab

Professor in the Radio-diagnosis department Faculty of Medicine Cairo University

Dr. Khaled Ahmed Mamdouh

Assistant Professor of in the department of Physical Therapy for Disturbance of growth and development In children and its surgery Faculty of Physical Therapy Cairo University

Acknowledgement


First, thanks to **ALLAH**, as I feel his great care, support and guidance in every step in my life.

- It is great honor to express my deepest gratitude, appreciation and respect to **Prof. Dr. Emam H. El-Negmy**, Dean of the Faculty of Physical Therapy for his meticulous supervision, encouragement and fatherly support. He does every effort and spared no time to offer his help up to the utmost.
- Great thanks and appreciation to **Prof. Dr. Nagy M. Abd El-wahab**, Professor in the Radio-diagnosis department, Faculty of Medicine, Cairo University, for his precious help in producing the x-ray films, recording of the radiological findings and his special support for the execution of the radiological part of the work.
- No words can express my deep thanks and gratitude to Assistant Prof. Dr. Khaled A. Mamdouh, Assistant Professor of Department of Physical Therapy for disturbance of growth and development in children and its surgery, Faculty of Physical Therapy, Cairo University, for his unlimited encouragement, valuable instruction, their obvious help and support specially during the practical part of this thesis.

- Special thanks are directed to my colleagues in Cairo and Alexandria for their help during the practical part of this thesis.
- Finally, I can not forget to thank all members in my family, my parents, my husband, my mother in law, my sister in law and her husband, my brothers and my sisters for their support and help throughout this study.

DEDICATION

To my parents, my husband and my daughter Theodora with all love.

Abstract

Knee Cage Versus Below Knee Orthosis In The Control Of Genu Recurvatum In Cerebral Palsied Children. / Nivirt Girgis Dawoud, Prof. Emam H. El-Negmy, Prof. Nagy M. Abd El-wahab, Ass. Prof. Khaled A. Mamdouh: Cairo University. Faculty Of Physical Therapy, Department of Physical Therapy for disturbance of growth and development in children and its surgery, 2002 - Master Thesis.

The purpose of this study was to determine and compare the effect of below knee orthosis and knee cage on genu recurvatum control of cerebral palsied children. Forty children with age ranging from 3 to 7 years were randomly assigned to either a knee cage or below knee orthosis group. Both groups also received the same traditional program. Assessments were made using x-ray and goniometer to assess genu recurvatum degree and tensiometer to assess their effects on quadriceps, hamstring, and gastrocnemius muscles strength. Both groups showed significant reduction in genu recurvatum degrees after the treatment period. They also showed significant improvement in the concerned muscles strength in knee cage group. While in below knee orthosis group, there was no significant improvement in the concerned muscles except hamstring muscle. There was no significant difference between the two groups in all parameters. It can be concluded that both orthoses were helpful in genu recurvatum control but knee cage was more accepted by patients.

(Key words: genu recurvatum - cerebral palsy - orthosis)

Contents

CHAPTERI	
Introduction	1
Statement of the problem	3
Aims of the study	3
Significance of the study	3
Limitations	4
Delimitations	4
Hypothesis	5
Basic assumption	5
CHAPTER II	
Literature Review:	
1. Knee joint	
• Anatomy	6
Biomechanics	13
2. Cerebral Palsy	
Definition	2
Etiology	22
Classification	24
3. Spastic Cerebral Palsy	
Definition	26
Motor Signs	26
Neural mechanisms underlying spasticity	27
 Pathology 	28
Treatments:	29
- Physical Therapy	3(

	- Onnoses	39
	- Neurosurgery	40
	- Orthopedic surgery	41
	- Drugs	41
4.	Neuromuscular electrical stimulation	
	General consideration	42
	 Physiological effects of NMES 	43
	 Physiology of electricity elicited responses 	47
	Factors influencing effectiveness of electrical stimulation	49
5.	Genu recurvatum	
	• Definition	51
	• Causes	52
	• Types	56
	 Management 	
	- Evaluation	60
	- Treatment	72
6.	Orthotics	
	 Introduction 	76
	 Terminology 	77
	Rational for application of orthoses	77
	Material of orthotics	79
	 Prerequisites for orthotics description 	80
	Difference between splint and brace	81
	Classification of lower extremity orthotics	81
	Physiological effects of splint	81
	Ankle foot orthoses	82

-	
 Types of Ankle foot orthoses 	86
- Biomechanics of Ankle foot orthoses	88
- Physiological effects of AFO	89
- Rational for application of AFO	89
Knee cage	94
- Types of Knee cage	95
- Biomechanics of swedish Knee cage	96
- Rational of Knee cage	97
Orthotic treatment of Genu recurvatum	98
CHAPTER III	
Subjects	101
Materials	103
Methods	107
CHAPTER IV	
Results	115
Discussion	144
Summary & Conclusion	152
Recommendation	
References	155
Appendix	
Arabic summary	

Lists of Tables

Table number	Title	Page
(1)	Scoring system for evaluation of the patient	67
	with genu-recurvatum	
(2)	Difference between splint and brace	83
(3)	Comparison between the two studied groups as	116
	regard to age and IQ.	
(4)	Comparison between pre and post measurement of	119
	X- ray in the two studied groups	
(5)	Comparison between pre and post measurement of	122
	standing in the two studied groups	
(6)	Comparison between pre and post measurement of	125
	supine in the two studied groups	
(7)	Comparison between pre and post measurement	128
	of quadriceps strength in the two studied groups	
(8)	Comparison between pre and post measurement of	131
	hamstring strength in the two studied groups	
(9)	Comparison between pre and post measurement of	134
	gastrocnemius strength in the two studied groups	
(10)	Comparison between the means and standard	137
	deviation of the difference in GR measurements	
	in the two studied groups.	
(11)	Comparison between the means and standard	140
ı	deviation of the difference in muscle tension	
	in the two studied groups.	
(12)	Correlation between Age, IQ and the improvement in	142
	all parameters in group I.	
(13)	Correlation between Age, IQ and other parameters	143
	in group II	