FIBROHISTIOCYTIC TUMORS OF THE SKIN

ESSAY

Submitted for Partial Fulfillment of Master Degree in Dermatology and Venereology

BY

Amal Ahmed Mousa

(M.B.B.Ch)

SUPERVISED BY

Prof. Dr. Salonas Ali Marzouk

Professor of Dermatology
Faculty of Medicine
Cairo University

Assist. Prof. Dr. Amira Amin Zayed

Assistant Professor of Dermatology
Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University

2008

ABSTRACT

Fibrous and fibrohistiocytic tumors of the skin are a heterogeneous group of dermal and dermal/subcutaneous mesenchymal neoplasms with fibroblastic, myofibroblastic and histiocytic differentiation, often occurring side by side in the same tumor. Fibrohistiocytic lesions of the skin contain both benign and malignant tumors. Electron microscopy and immunohistochemical staining led to a revolution in our understanding and diagnosis of the fibrohistiocytic tumors of the skin.

KEY WORDS: Fibrohistiocytic tumors, fibrous tumors, immunohistochemistry.

بسم الله الرحمن الرحيم

[وقل رب زدنی علما]

(صدق الله العظيم) (سورة طه – ١١٤)

ACKNOWLEDGEMENT

First, Thanks to **ALLAH** whose blessings on me can not be counted.

I would like to express my deepest gratitude and respect to **Prof. Dr. Salonas Ali Marzouk**, Professor of Dermatology, Faculty of Medicine, Cairo University, for her faithful supervision, valuable suggestions and constructive advice during the preparation of this study.

I would also like to convey my deep appreciation and thanks to **Dr. Amira Amin Zayed**, Assistant Professor of Dermatology, Faculty of Medicine, Cairo University, for her support, patience and sincere encouragement.

Finally, I would like to thank my family for their ever lasting, encouragement and patience.

CONTENTS

	Pages
Introduction and Aim of the Work	1
Chapter (I):	4
A) Histology of dermal fibroblasts and histiocytes.	
B) Classification of fibrous and fibrohistiocytic tumors of the	
skin.	
Chapter (II):	11
Immunohistochemical staining of fibrous and fibrohistiocytic	
tumors	
Chapter (III) : Fibrous tumors	29
Chapter (IV): Fibrohistiocytic tumors	89
Conclusion	112
Summary	114
References	116
Figure references	150
Arabic Summary	

List of Tables

Table		Page
Table (1)	Recent World Health Organization classification of	9
	fibrohistiocytic tumors	
Table (2)	Modified World Health Organization classification of	10
	fibrous and fibrohistiocytic tumors of the skin and	
	subcutaneous tissue.	
Table (3)	Common immunohistochemical markers	12
Table (4)	Types of cells comprising fibrous tissue	28
Table (5)	Fibrous tumors	29
Table (6)	Fibrohistiocytic tumors	89

List of Figures

Fig.		Page
Fig. (1)	Spindle shaped fibroblasts with clear nuclei and collagen in between.	5
Fig. (2)	Macrophages in connective tissue after phagocytosis of trypan blue dye. The nuclei are stained light pink.	7
Fig. (3)	Subcatiegorization of acidic (A) and basic (B) cytokeratin subgroups within various tissues (Cooper et al., 1985)	14
Fig. (4)	Immunohistochemical assay for desmin labels the spindle cells with abundant pink cytoplasm.	17
Fig. (5)	Positive dendritic histocytes are sprinkled among plump, round cells in a whorl of cells (S-100 protein)	19
Fig. (6)	Photomicrography of immunohistochemical examination, showing strong positivity of tumor cells to antibody-antiCD34	22
Fig. (7)	Nasal papule histopathology stained with CD31 demonstrates mainly membranous labeling (arrow) of all the cells in the infiltrate.	23
Fig. (8)	Tumor cells of atypical fibroxanthoma stain positive with CD68.	24
Fig. (9)	Histiocytes are intensely stained; the cytoplasm of some of the tumor cells are weakly stained with factor X111a	26
Fig. (10)	CD99 immunohistochemistry stain diffusely positive in the tumor cells (solitary fibrous tumor)	27
Fig. (11)	Multiple skin tags (fibroepithelial polyps), some of them are furrowed papules, while others are filliform smooth growths	30
Fig. (12)	Skin tag. A polypoid lesion with overlying mildly acanthotic epidermis. There is loose, edematous fibrovascular core with mild acanthotic inflammation	32

Fig. (13)	Pleomorphic fibroma. The lesion that protrudes above the line marking the adjacent skin plane shows: dilated vessels which are prominent as in a skin tag and skin appendages are not seen	34
Fig. (14)	Fibroma of tendon sheath. Spindle shaped cells with scanty cytoplasm and vesicular nuclei	36
Fig. (15)	Shagreen patch of tuberous sclerosis. Flesh-colored plaques of variable size located in the lumbosacral area	38
Fig. (16)	Storiform collagenoma. An unencapsulated dermal nodule that characterized by epidermal atrophy, a whorled appearance of sclerotic collagen bundles separated by clefts containing mucin, the hyaline collagen bands are a cellular	39
Fig. (17)	Keloid with claw like outline	43
Fig. (18)	Histology of keloid demonstrating thickened hyalinized collagen bundles (hematoxylin and eosin satin)	45
Fig. (19)	Desmoplastic fibroblastoma. Spindle and stellate shaped cells embedded in a dense collagenous stroma	46
Fig. (20)	Nodular fasciitis. The center of the lesion is hypocellular or hyalinized while the periphery is hypercellular with inflammatory cells and blood vessels. The background stroma shows variable myoxid changes	48
Fig. (21)	Proliferative fasciitis. Clusters of rounded basophilic fibroblasts with prominent nuclei and nucleoli, the stroma is myxoid	51
Fig. (22)	Fibrous hamartoma of infancy. There are mature adipocytes, nest of undifferentiated spindle cells and intersecting trabeculae of spindle cells	53
Fig. (23) (a) & (b)	Show low power view of one of the deeper sections (stained darker) of the mass. The tumor has more of a fascicular pattern in this area. Tissue mucin is prominent in this preparation	56
Fig. (24)	Dermatomyofibroma. Bland spindle-shaped tumor cells containing an ill-defined, pale eosinophilic cytoplasm and elongated nuclei	58

Fig. (25)	Calcifying aponeurotic fibroma. Foci of classification and cartilage formation in a densely collagenous stroma	60
Fig. (26)	Juvenile hyaline fibromatosis. Dermal nodules characterized by association of fibroblasts and large amounts of inspissated hyalinized material	62
Fig. (27)	Superficial fibromatosis. Proliferations of pale eosinophilic fibroblasts and myofibroblasts and abundant collagen between the tumor cells	65
Fig. (28)	High power view of infantile digital fibromatosis presenting intracellular inclusions (center arrows) and an apparent extracellular inclusions (left arrow)	69
Fig. (29)	Extra-abdominal fibromatosis. Spindle shaped cells of uniform appearance surrounded and separated from one another by abundant collagen	72
Fig. (30)	Desmoid tumor. Spindle shape cells invade skeletal muscles	74
Fig. (31)	Infantile fibromatosis. Mature adipose tissue, densely packed primitive spindle cells and mature appearing spindle cells	78
Fig. (32)	Fibromatosis colli. There is an intimate mixture of fibrous tissue and entrapped partly atrophic muscle fibers	80
Fig. (33)	Adult fibrosarcoma. Long fascicles of spindle cells that interlace, a uniform appearance of the nuclei and the amount of collagen is variable. The cells often form a classic herring-bone pattern	83
Fig. (34)	Infantile fibrosarcoma. Sheets of solidly packed spindle- shaped cells arranged in bundles, small, rounded, immature-appearing cells and scattered chronic inflammatory cells	85
Fig. (35)	Solitary fibrous tumor. Ovoid or spindle-shaped cells arranged haphazardly, often in a fascicular manner and whorled pattern, in a heavily collagenized stroma	88

Fig. (36)	Dermatofibroma. (The top of specimen). Epidermal hyperplasia is present, there is also a central depression in the outline of the skin, and this is seen in few dermatofibromas. Cellular proliferation involving the dermis is apparent	91
Fig. (37)	Dermatofibroma. A medium power view of the lesion shows, numerous histiocytes and spindle cells. Multinucleated giant cells of touton type are also present	92
Fig. (38)	Juvenile xanthogranuloma. Few lymphocytes scattered between foamy histiocytes	100
Fig. (39)	Reticulohistiocytoma. The lesion is well circumscribed in the dermis and the overlying epidermis shows hyperplasia inflammatory infiltrate in the lesion is abundant	103
Fig. (40)	Reticulohistiocytoma. There is glassy eosinophilic cytoplasm of the histiocytic cells which are mononucleated or multinucleated	103
Fig. (41)	Atypical fibroxanthoma. There is thin epidermis, Grenz zone (thin zone of collagen) and ectatic vessels in the superficial dermis	107
Fig. (42)	Malignant fibrous histiocytoma. Low-grade tumor which is hypocellular and consist of round or elongated bland and pleomorphic cells in a prominent myxoid stroma. The atypical cells have irregular hyperchromatic nuclei	111

List of Abbreviations

AFH	Aneurysmatic fibrous histiocytoma
AFX	Atypical fibroxanthoma
APFH	Atypical (pseudosarcomatous) fibrous histiocytoma
C3	Complement 3
CD31	Platelet endothelial cell adhesion molecule-1
CD34	Human hematopoietic progenitor cell antigen
CD45	Leukocytic common antigen
CD68	Also called KP1, macrosialin
CD99	(T-cell surface glycoprotein E2)
CFH	Cellular fibrous histiocytoma
DF	Dermatofibroma
DFSP	Dermatofibrosarcoma protuberance
DMF	Dermatomyofibroma
EFH	Epithelioid fibrous histiocytoma
EMA	Epithelial membrane antigen
Fator IIIxa	Fibrin-stabilizing factor
FC	Crystallizable fragment
FH	Fibrous histiocytoma
GFAP	Glial fibrillary acidic protein
HIV	Human immunodeficiency virus
HMB45	Human melanin black
HMFG	Human milk fat globule
HLA-DR	Human leukocyte antigen – D subregion of the major histocompatibility complex
IgG	Immunoglobulin G
KD	Kilo Dalton
MFH	Malignant fibrous histiocytoma
TATT, TT	111411511411t 1101045 1115t100 y tollia

μm	Micrometer
Myo-D1	Myogenic nuclear regulatory protein
PDGF	Platelet – derived growth factor
SFT	Solitary fibrous tumor
Syn	Synonym
TGF-B	Transforming growth factor B1
vWF	Von Willebrand factor (factor VIII-related antigen)
WHO	World health organization
XG	Xanthogranuloma

Introduction and Aim of the Work

Fibrous tumors and tumor-like lesions form a large, diverse group of distinct entities that differ greatly in their clinical behavior. Some are completely benign and rarely if ever recur, even after incomplete excision. Others are poorly circumscribed and infiltrate the surrounding soft tissues, with a tendency to recurrence unless they are widely excised initially. Others are frankly malignant tumors that frequently recur and metastasize (*Weiss and Goldblum*, 2001).

The concept of fibrohistiocytic lesions is attended by long-standing; controversy. Originally, the notion was based on apparent features of both fibroblastic and histiocytic morphology of neoplastic cells when cultured in vitro. However, it is now recognized that the cytologic features of these differentiation pathways are not specific. Despite this, the term "fibrohistiocytic tumors" is familiar and is still being used in the classification of mesenchymal neoplasms. Accordingly this term is retained for convenience (*Shea and Prieto*, 2003).

Fibrohistiocytic lesions of the skin contain both benign and malignant tumors. Fibrous histiocytoma, Juvenile xanthogranuloma, reticulohistiocytoma and atypical fibroxanthoma are among the benign lesions of this group. While malignant fibrous histiocytoma and variants comprise the malignant lesions of fibrohistiocytic neoplasms (*Fletcher et al., 2001*).

The fibrohistiocytic tumors of the skin are a heterogeneous group of dermal and dermal/subcutaneous mesenchymal neoplasms with fibroblastic, myofibroblastic and histiocytic (monocytic/macrophage – like) differentiation often occurring side by side in the same tumor. In this context, the term "fibrohistiocytic" denotes the morphologic similarity of these cells to fibroblasts and histocytes on light microscopy; it does not prove the histogenesis of the neoplasm. Morphologically, the term "histiocyte" refers to a macrophage – like or epithelioid cell differentiation in the dermal soft tissue (*Hugel*, 2006).

Aim of the Work:

The aim of this study is to revise this group of fibrohistiocytic tumors of the skin, and to compare it with the group of pure fibrous tumors, which show fibroblast proliferation only. This will be achieved by trying to collect all possible data in the literature to help in the comparison especially from the phenotypic and immunohistochemical aspects, in order to determine if the term "fibrohistiocytic lesions" deserves to be retained on more solid bases rather than familiarity and convenience.