

Ain Shams University
Faculty of Science
Chemistry Department

Application of the Pulsed Column Technology in Uranium Recovery from Gattar Uranium Ore Concentrate, Eastern Desert, Egypt

ATHESIS

Submitted By

Walid Mohamed Morsy Ramadan

M.Sc. Chemistry (2009)

To fulfilment of the Degree of Doctor of Philosophy in Science (PhD)

(In-Organic Chemistry)

Supervised by

Prof. Dr. Mohamed .F. El-Shahat Dorgam

Prof. of Analytical and Inorganic Chemistry Faculty of Science, Ain Shams University

Prof. Dr. **Hisham Mohamed Kamal Mahmoud**Nuclear Material Authority

Dr. Reda Abd Elshahed Abd Elgawad Gazala

Nuclear Material Authority

Chemistry Department
Faculty of Science
Ain Shams University
Cairo- Egypt
2017

Ain Shams University
Faculty of Science
Chemistry Department

Application of the Pulsed Column Technology in Uranium Recovery from Gattar Uranium Ore Concentrate, Eastern Desert, Egypt

ATHESIS

Submitted By

Walid Mohamed Morsy Ramadan

To fulfillment for the degree of doctor of philosophy in science (PhD) (Inorganic Chemistry)

This Thesis has been approved for submission by the supervisors

Prof. Dr. Mohamed .F. El-Shahat Dorgam......

Prof. of Analytical and Inorganic Chemistry
Faculty of Science, Ain Shams University
Prof. Dr. **Hisham Mohamed Kamal Mahmoud**.......
Nuclear Material Authority
Dr. **Reda Abd Elshahed Abd Elgawad Gazala**......

Nuclear Material Authority

Head of Chemistry Department Faculty of Science Ain Shams University

Prof. Dr. Ibrahim.H.A.Badr

CONTENTS

	Page
Acknowledgment	
List of Tables	ii
List of Figures	iv
ABSTRACT	xvii
INTRODUCTION	1
CHAPTER .I. THEORETICAL ASPECTS AND LITERATU	RE REVIEV
I.1.General Statement	7
I.2. Uranium Ore Leaching Procedures	10
I.2.1.Acid Leaching Characteristics	11
I.2. 1.Alkaline Leaching Characteristics	12
I.3. Uranium Concentration and Purification Procedures	14
I.3.1.Uranium Recovery by Ion Exchange Resins	16
I.3.1.1.Uranium Adsorption Process	16
I.3.1.2.Uranium Elution Process	19
I.3.1.3.Ion Exchange Equipment	20
I.3.2.Uranium Recovery by Organic Solvents	25
I.3.2.1.Uranium Extraction Chemistry	27
I.3.2.2.Uranium Stripping Chemistry	33
I.3.2.3.Multistage Operation	35
I.3.2.4.SolventExtraction Equipment	37
A. Characteristics of the Pulsed Column	44
B. Design Aspects of the Pulsed Column	45

C. Operating Conditions	
D. Empirical Correlations for the Design of Pulsed	
Column	53
(i).Maximum Flux and Pulsation Intensity	54
(ii) Flooding and Flooding Curve	57
(iii)Axial Dispersion	59
(iv)Holdup	61
(v)Drop size	62
(vi)Backmixing	63
I.4. Uranium Product Precipitation	64
I.4.1.Preciptation from Acidic Solutions	65
I.4.1.1.Neutralization Precipitation	65
I.4.1.2.Oxidation Precipitation	66
I.4.2.Preciptation from Alkaline Solution	67
I.4.2.1. Hydrolysis Precipitation	67
I.4.2.2.Oxidation Precipitation	68
I.4.2.3. Crystallization Precipitation	68
CHAPTER II: EXPERIMENTAL	
II.1.Chemicals and Reagents	69
II.2.Material	70
II.3.Purification Procedures	72
II.3.1.Batch Mixed Eluex(Synergism)	72
II.3.2.Continuous Mixed Eluex(Pulse Column)	73
II.3.2.1.Characteristics of the Constructed Column	73

(i) Effect of Pulsation Intensity and Frequency.	76
(ii) Dispersed-Phase Holdup	77
II.3.2.2.Detrimination of the Relevant Physical Parameters	78
(i)Density	78
(ii)Viscosity	78
(iii) Interfacial Tension area	79
II.3.3.Uranium Product Precipitation	79
II.4.Analytical Procedures	80
CHAPTER III : RESULTS AND DISCUSSION	
III.1-Results of Equilibrium Mixed EluexProcedures	83
III.1.1-EquilibriumMixed Amex Procedures	83
III.1.1.1-Study of Relevant Uranium ExtractionFactors	84
i.Effect of pH.	84
ii. Effect of Contact Time.	86
iii. Effect of Uranium Concentration	87
iv. Effect of D2EHPA Concentration.	88
v. Effect of TOA/D2EHPA Mixed SolventConcentration.	90
vi. Effect of Temperature.	91
vii. Effect of Chloride Concentration.	92
viii.Effect of O/A Ratio and Construction of	
McCabe-Thiele Extraction Diagram	94
III.1.1.2- Study of Relevant Uranium Re-extraction Factors	95
i-Effect of Contact Time	97
ii-Effect of Temperature	98

iii-Effect of O/ARatio and Construction of	
McCabe-ThieleStripping Diagram	99
III.1.2. Equilibrium Mixed Dapex Procedure	101
III.1.2.1-Study of the Relevant Uranium Extraction Factors	102
i. Effect of pH.	102
ii. Effect of Contact Time	104
iii. Effect of Uranium Concentration	105
v. Effect of Solvent Concentration.	106
vi. Effect of Temperature.	107
vii. Effect of Chloride Concentration.	108
viii. Effect of O/A Ratio and Construction of McCabe-	
Thiele Extraction Diagram construction	110
III.1.2.2- Study of the Relevant Uranium Re-extraction	
(Stripping) Factors	112
i-Effect of Contact Time	113
ii-Effect of Temperature.	114
iii-Effect of O/A Ratio and Construction of	
McCabe-ThielStrippingDiagram	115
III.2.Application of the Pulsed Column	116
III.2.1.Extraction Results via the working Pulsed Column	117
III.2.1.1-Effect of the Pulsation Intensity	120
III.2.1.2-Effect of the Max Flux	122
III.2.1.3-Effect of the Frequency	124
III.2.2. Stripping Results via the working Pulsed Column	126

III.2.2.1-Effect of the Pulsation Intensity	129
III.2.2.2-Effect of the Max Flux	131
III.3.Uranium Product Precipitation	133
SUMMARY AND CONCLUSION	139
ABBREVIATIONS	146
REFERENCES	147
الملخص العربي	1

LIST OF TABLES

	Page
Table(1): Classification of commercial contactors and their	43
performance	73
Table (2): Specifications of the used chemicals and reagents	68
Table (3): Chemical composition of Gattar II PLS obtained by	
sulfuric acid heap leachingof GII uranium ore	70
Table (4):Chemical composition of Gattar II eluate of Gattar	
mini pilot plant	71
Table(5):Geometrical characteristics of the working pulsed	
column	76
Table (6): Effect of pH on uranium and iron extraction from	
Gattar mini pilot plant eluate by 3%TOA/2%DEHPA	
mixed solvent in kerosene	85
Table (7): Effect of contact time on uranium extraction from	0.5
Gattar mini pilot plant eluate by 3%TOA/2%D2EHPA	
mixed solvent in kerosene	86
Table (8): Effect of Uranium concentration on its extraction	
from Gattar mini pilot plant eluate by	
3%TOA/2%D2EHPA mixed solvent in kerosene	87
Table(9):Effect of D2EHPA Concentration on uranium and iron	
extraction from Gattar mini pilot plant eluate by	
	89
Table (10): Effect of Solvent concentration on uranium	

extraction from Gattar mini pilot plant eluate by	
TOA/D2EHPA mixed solvent in kerosene	90
Table (11): Effect of temperature on uranium extraction from	
Gattar mini pilot plant eluate by 3%TOA/2%D2EHPA	
mixed solvent in kerosene	91
Table (12):Effect of chloride concentration on uranium	
extraction from synthetic solvents comparable to Gattar	
mini pilot plant eluate by 3%TOA/2%D2EHPA mixed	
solvent in kerosene	92
Table (13): Effect of O/A ratio on uranium extraction from	
Gattar mini pilot plant eluate by 3%TOA/2%D2EHPA	
mixed solvent in kerosene	94
Table (14):Effect of contact time on uranium stripping	
efficiency from loaded 3%TOA/2%D2EHPA mixed	
solvent using 120g/l Na ₂ CO ₃	97
Table (15):Effect of Temperature on uranium stripping	
efficiency from loaded 3%TOA/2%D2EHPA mixed	
solvent using 120g/l Na ₂ CO ₃	99
Table (16): Effect of O/A-ratio on uranium stripping from	
loaded 3%TOA/2%D2EHPA mixed solvent using	
$120g/l Na_2CO_3$	100
Table (17): Effect of pH on uranium and iron extraction from	
Gattar mini pilot plant eluate by 3% D2EHPA /3%TBP	102
mixed solvent in kerosene	103

Table (18): Effect of contact time on uranium extraction from	
Gattar mini pilot plant eluate by 3% D2EHPA /3%TBP	
mixed solvent in kerosene	104
Table (19): Effect of Uranium concentration on its extraction	
from Gattar mini pilot plant eluate by 3% D2EHPA	
/3%TBP mixed solvent in kerosene	105
Table (20): Effect of Solvent concentration on uranium	
extraction from Gattar mini pilot plant eluate by	
D2EHPA/TBP mixed solvent in kerosene	107
Table (21): Effect of temperature on uranium extraction from	
Gattar mini pilot plant eluate by 3% D2EHPA /3%TBP	
mixed solvent in kerosene	108
Table(22):Effect of chloride concentration on uranium	
extraction from synthetic solvents comparable to Gattar	
mini pilot plant eluate by 3% D2EHPA /3%TBP mixed	
solvent in kerosene	109
Table(23): Effect of O/A ratio on uranium extraction from	
Gattar mini pilot plant eluate by 3% D2EHPA /3%TBP	
mixed solvent in kerosene	110
Table (24):Effect of contact time on uranium stripping	
efficiency from loaded 3% D2EHPA /3%TBP	
mixed solvent using 120g/l Na ₂ CO ₃	112
Table (25):Effect of Temperature on uranium stripping	
efficiency from loaded 3% D2EHPA /3%TBP mixed	

solvent using 120g/l Na ₂ CO ₃	113
Table (26): Effect of O/A-ratio on uranium stripping from	113
loaded 3% D2EHPA /3%TBP mixed solvent using	
120 g/l Na_2CO_3	114
Table(27):Physical properties of the operating liquid	
systems(3%TOA/2%D2EHPA,3%D2EHPA/3% TBP	
and the Gattar mini pilot plant eluate	117
Table(28): Calculated theoretical operating parameters of the	
working extraction process in the designed pulsed	
column	118
Table (29)-Effect of the pulsation intensity of the working	
pulsed column on the uranium mass transfer coefficient	
and holdup of the dispersed phase (X_d)	120
Table (30)-Effect of the max flux in the working pulsed column	
on the uranium mass transfer coefficient and the holdup	
of the dispersed phase (X _d)	123
Table (31)-Effect of the frequency in the working pulsed	
column on the uranium mass transfer coefficient and	
the holdup of the dispersed phase X_d	126
Table (32): Physical properties of the two operating liquid system	
Table(33):Calculated theoretical operating parameters of the	126
working stripping process in the designed pulsed	100
column	128

Table (34): Effect of the pulsation intensity of the working	
pulsed column on the uranium stripping efficiency and	
the holdup	129
Table (35)-Effect of the maximum flux on the uranium stripping	
efficiency in the working pulsed column	131
Table (36): Comparative analysis of uranium tri-oxide product	
prepared via different solvents	135

LIST OF FIGURES